A NEW VITERBI DECODER DESIGN FOR CODE RATE K/N

Hsiang-ling Li and Chaitali Chakrabarts
Department of Electrical Engineering
Telecommunications Research Center

Arizona State University Tempe, AZ 85287-5706, USA
li@dspsun.eas.asu.edu and chaitali@asu.edu

ABSTRACT

A novel VLSI architecture is proposed for implementing a
long constraint length Viterbi Decoder (VD) for code rate
kE/n. This architecture is based on the encoding structure
where k input bits are shifted into k shift registers in each
cycle. The architecture is designed in & hierarchical man-
ner by breaking the system into several levels and design-
ing each level independently. At each level, the number of
computation units, the interconnection between the units
as well as allocation and scheduling issues have been deter-
mined. In-place storage of accumulated path metrics and
trace back implementation of the survivor memory have
also been addressed. The resulting architecture is regular,
flexible and achieves a better than linear tradeoff between
hardware complexity and computation time.

1. INTRODUCTION

The maximum likelihood decoding of convolutional and trel-
lis codes based on the Viterbi algorithm is an important
problem in digital communication. Most of the existing
implementations of the Viterbi algorithm are for code rate
R =1/n. The trellis diagram for this case has a simple and
symmetric structure, and is amenable to implementation

by one or more processing units. For code rate R = k/n,

the encoder has k input bits connected to k shift registers.
When the sizes of the shift registers differ by at most one
bit, the encoder can be modelled as a single radix-2* shift
register [1]-[3]. A scalable architecture has been developed
for this case in [3]. In general, the sizes of the shift regis-
ters may differ by more than one bit. Then the design of
the Viterbi decoder (VD) should be based on the original k
shift register structure. The trellis diagram now no longer
has the simple structure of a R=1/n encoder. A systolic ar-
chitecture has been developed for this case in [4], where each
processor is assigned only one state. The non-scalability of
this architecture and the fact that it is less efficient when the
shift registers are not of equal size, make this architecture
unattractive.

This research was supported in part by a grant from NSF
MIP-9309504. ’

2743

In this paper we present a scalable architecture for the
case when the sizes of the shift registers may differ by more
than one bit. The architecture is designed in a hierarchical
manner by breaking the system into several levels, and by
designing each level independently. The tasks in the design
of each level range from determining the number of compu-
tation units and the interconnection between the units to
the allocation and scheduling of operations. Additional de-
sign issues such as in-place storage of the accumulated path
metrics (APMs) and the trace back implementation of the
survivor memory have also been addressed. The resulting
architecture is regular, has a foldable global topology and is
very flexible. It also achieves a better than linear tradeoff
between hardware complexity and computation time.

2. OVERVIEW OF THE WHOLE SYSTEM

Let I; be the length of the sth shift register, 1 < i <k, and
let the input data be binary. The state label in the trellis
diagram is a string of bits obtained by connecting each shift
register in series. The label can be divided into k blocks,
with each block corresponding to a shift register. The input
to every block is connected to the LSB of the shift register.
The trellis diagram resulting from this topology can be de-
scribed by the relation,
Opix =t L 00 5 BTG, L BTG,

Here 0 denotes the 1-bit binary combinations and bﬁ"—l Tep-
resents the fixed portion of the ith block bi ;1 ...b:1. The
comma “” is employed as a separation between the blocks.
Thus every state is connected to 2* states in the trellis dia-
gram.

We aggregate all those states having the same bits in the
kth block into one single node called the supernode. Then,
the trellis diagram reduces to the diagram for code rate
1/n. Since the connection pattern between the supernodes
is the same at every stage of the trellis diagram, we refer to
this communication pattiern as fized. Every supernode then
needs to communicate with two parent and two descendant
supernodes at every stage. The communication pattern be-
tween supernodes can also vary from stage to stage with a
period of I,. This is accomplished by shifting circularly the
bits of the kth block by one bit at each trellis stage. We refer

0-7803-2431-5/95 $4.00 © 1995 IEEE

to such a communication pattern as dynamic. This results
in in-place updating of all the states within a supernode. As
a result, every supernode now communicates with only one
other supernode at each stage of the trellis diagram. The in-
terconnections between the states inside the supernodes are
the same for both connection patterns. Figure 1 describes
the global topology of the proposed system. The routing
network supports either fixed or dynamic communication
pattern.

supernode 1 routing

network

rl’m —'l

Figure 1: The architecture model for the whole system.

3. INTERNAL TOPOLOGY OF THE
SUPERNODES

3.1 Processor Allocation

The connectivity between the states in the supernodes
can be described by
Obm—t, ..., 00" — bl 15, , b D, where m = k — 1.
We group those states whose state labels have the same
(Ii — ji) MSBs in the ith block, and assign an ACS (Add-
Compare-Select) unit to this group of states, 0 < j5; <
i —1and 1 < i € m. Thus, every ACS unit updates
the APMs of 2/m*"'+/ states. The ACS unit is labeled
as ACS(bi,’:‘,...,bi‘), where l; = l; — ji, and bé‘ denotes
big; . bi(ji41)- Ji1---,Jm are determined by the design
constraints of the VD. .
Consider the following relation between the ACS units,
ACS(Bbip™,..., 06271y = ACS(bim™*0,..., b2 7 0). (1)
Every ACS unit has to communicate with 2* other ACS
units equally distributed between two destination supern-
odes (2*~! ACS units in each supernode). At the nth stage
(t=nT), each state receives 2* APMs, one from each parent
ACS unit. The 2* parent ACS units are equally distributed
between two parent supernodes. The updated APM at the
nth stage is sent to 2* descendant states at the (n + 1)th
stage. The 2* descendant states are equally distributed be-
tween two descendant ACS units in two descendant supern-
odes. For dynamic communications, every ACS unit com-

municates only with 2™ ACS units in a parent supernode
and 2™ ACS units in a descendant supernode. Each ACS

unit has a memory to store the APMs transferred from the
parent ACS units.

3.2 Processor Clustering and Interconnections

Since the interconnection between the ACS units is quite
costly, we propose a second aggregation phase similar to
[3] in order to increase the overall efficiency of the com-
munication links to 100%. Define the set of ACS units on
the left-hand side of the eqn (1) as the departure equiva-
lence ACS units or DEACS. The DEACS label generated

' . [
[i, -1

from the ACS units, ACS(0b,7™",..., 06 7") is DEACS
1 !
(bur~*,...,b7"). The number of ACS units included in a

DEACS is 2™. Every DEACS has 2™ global links with one
descendant supernode, and 2™ global links with one par-
ent supernode. A switching network is associated with each
DEACS to route the APMs such that no conflict occurs.

Example: Let k = 3, i, = 5, = 5,lz = 2,51 = 3,
and j2 = 2. Consider the DEACS labeled DEACS(01,0)
in one of 4 supernodes. We index an ACS unit by the

following rule ACS(biT,...,b) — ACS;, where i =
dec(bm,iy, - .- b2,13b1,0,). dec(bm...b2b1) is defined as the
decimal value of the binary bits by, ... b2b1 and i ranges from
0 through 2™ — 1. The four ACS units in DEACS(01,0)
are indexed as follows:

(i) ACS(001,00) — ACSo, (i) ACS(001,10) — ACS;, (iid)
ACS(101,00) — ACS», and (iv) ACS(101,10) — ACS;.
This communication pattern is illustrated in Figure 2. O

DEACS(10.0) :

ACS, H

DEACS(01.0) :

C80L.0) ACS | wildlma: '

ACS (001.00) Acs, |mewark [

i ;

ACS (001,10) n':"'m:“ ACS, T

ACS (101.00))

1

H ACS (10L.10) DEACY(10.1) 1

:

p ACS ¢ '

d DEACS(0L.1 v !

: CSOLD ACS, |switching _ |

1 ACS (0010 | ACS, |mework [

' ACS (00111 [SWildhing ACS .

| network 3 .

' ACS (101.01) ;

: ACS (10L11) DEACS(11.0) :

1 q ACS, H
! isching ™ | ! : itching ™ |
|| ACSy |switching _ i Every DEACS connectsto ! ACS, |switching _ .
i | Acs, |nework Lo | : ACS, {newak L. .
! 2 ' 1 4 DEACSs. 2 e
t | ACS, ! ! ACS;. |
1 1 i H
! DEACS(10.1) 1 i\ _DEACXILD i
P [A P LA =
| ACS; | swisching ! ! | ACS | switching[!
5 ACSZ network | .. ; | 2 ACS, netwark t: E
1 S 1 H ;
1] ACS, I ; ' | ACS,)
H ' | | 1
1 ; '
; i

1 i

Figure 2: The clustering and connectivity between ACS
units for the example where m = 2.

So far we have described the following four levels in the
hierarchical design of the VD.
(i) The highest level is the supernode level with 2 su-

2744

pernodes. (i) The second level is the DEACS level with

gty /2™ DEACSs in each supernode. (iii) The third
level is the ACS unit level with 2™ ACS units inside a
DEACS. (iv) The lowest level is the state level. 29m++i
states are updated by an ACS unit, and 2'»%"th states
are aggregated into one supernode.

3.3 Processor Scheduling

Consider the ACS units in DEACS(br ™", ... 52 ")
Let every ACS unit labeled ACS(bm,i bem ™, ., bus bt ™)
(out of 2™ ACS units) communicate with one distinct de-
scendant ACS unit during a time interval of T/2™. The

descendant ACS unit to be communicaf;ed with at the nth

time interval is ACS(B bmjm,..., b ‘b1 j,), where

dec(bm jpm - - - 1,5,) = [dec(bmtpy ... b1,) + 7 — 1] mod 2™
and n=1,2,...,2™.

In one time interval, every ACS unit updates sequen-
tially the APMs of 29m+'+i1 /2™ states according to the
increasing order of the number, dec(bim=*... b2 5171,
where b{‘—l denotes b;(j;—1).--bi1. The permutations de-
manded by this scheduling are structured such that they
can be easily implemented using registers and some control
logic, and do not require general-purpose routing networks.

4. MEMORY MANAGEMENT

In a VD, memory is required to store the APMs (that are

distributed among the ACS units) and the survivor sequences.

4.1 In-place Storage of the Accumulated Path Met-
rics

To update the APMs of the states, an ACS unit has
to read a set of parent APMs from its local memory in a
specified order dictated by the update schedule. At the
same time, this ACS unit receives from parent ACS units a
set of newly updated parent APMs for the next cycle that
are stored sequentially into the original positions occupied
by the old APMs. For the case when ji. > 2 and j; = 2
for ¢ = 2,...,m, the local memory of an ACS unit has
2im+etiyn = 92m—1)+i1 memory cells and the address of
each cell consists of 2m + 71 — 2 bits. Each cell stores 2
parents APMs which are fetched sequentially. The first m
address bits represent the block (out of 2™ blocks) that this
cell belongs to, and the remaining bits index the cell in
the block. The address generator needs to support only
two kinds of memory access patterns. The addresses of
a parent APM in the two access patterns are related by
A™B™CH1 2 _, B™A™CI17?, where A™ or B™ repre-
sents a block of m bits and C71~2 represents a block of
J1 — 2 bits. The structure of the data buffer unit for this
case is shown in Figure 3. It consists of 2 blocks with
291=2 memory banks in each block. The unit is pipelined
in order that the ACS computations for one interval can
be overlapped with data fetch for computations of the next

interval. 2™7' iterations are required to finish updating
all the states in an interval. In each iteration, the 271~2
banks in block 1 are accessed one after the other, each
access lasting 2 time steps. Assume that the ACS unit,

ACS(bm,im b bulbi‘_l) is updating the states in
the ith interval. Here a; is equal to [dec(bm,ip ---b1,1,) + 1]
mod 2™ %2272 { = 1...m. The parent APMs for the com-
putations of the (:+ 1)th interval are loaded in cyclic mode;
first into the Oth position of each of the 2/ =2 banks in block
2, then into the 1st position of each of the banks, and so on.

: data buffer unit ;
: block 2 _ block 1 :
i 0.1, —t = 0_.1‘ E
/ PES ULV N | N g W \ |
_ . :
: 0_a,+1 02+l ;
: : W 3 ik 10ACS

o DMUX/ 271 el [l 2Tl 2% ;| MUX 5 prooessor
memory .)) 4;
A
\ DR o e 0_a;,p02 5
| D ona Yo 1
bolam a2 _J_u 2%1_ap+2"% 0 :

Figure 3: The memory scheme for the case when j; > 2 and
ji=2for2<i<m.

For other sets of j;s values, the memory accesses are
not as simple and the in-place storage cannot always be
utilized. This is not really restrictive, since the values of jis
are chosen by the designer. In fact, the performance of the
VD is affected by the value of j;n +--- + J1, and not on the
individual values of j;s. Consider an example where k = 4,
and the lengths of the shift registers are 4, 3, 3, and 2. Let
J1+J2+Jjs = 7 from performance considerations. We choose
=214 =4, =3, s = 3 such that j; =3, 72 = 2 and
Js = 2 can be chosen for efficient APM memory design.

4.2 Survivor Memory Management

The trace-back technique is a more efficient approach
for reconstructing the survivor sequence. In our design of
the VD, the time required to complete one global cycle is
2im++i1 clock cycles, which is usually long enough to per-
form the trace back operation. Hence, the throughput is not
actually limited by the decoding rate. The classical one or
K-pointer trace-back technique can be easily employed here,
the specific choice depending on the value of jm +--- + 71.
The structure of the survivor memory used is similar to the
one proposed in [5]. Assume that the size of the RAM is
N x S, where N is equal to the number of states and S is
a function of the survivor merging length, L. Every column
in the RAM corresponds to a single column in the trellis
diagram. FEach memory cell stores two values, a decision
pointer (DP) and the corresponding branch label (k input
bits in every cycle). The DP consists of the k MSBs of ev-
ery block in a state label. Some additional logic circuits are

2745

required to generate the address of the DP of the previous
state label. There are three basic operations performed in
the trace-back technique, namely trace-back, read-out and
write, which require T, R, and W time units, respectively.
The RAM implementation can be completely described by
the following two rules:

Rule 1: After the collision of a read pointer and the write
pointer, the read pointer first traces back L columns and

then reads out D branch labels, while tracing back D columns.

At the end of read-out, it collides with the write pointer
again and repeats the above procedure. The write pointer
writes new data into D columns after colliding with a read
pointer. Thus, S=L+ D+ K=« D.

Rule 2: Between successive collisions of a read pointer and

the write pointer, the write pointer writes out K x.D columns.

Thus L+*T+D+«R=K*Dx*W.

A simple two stack LIFO structure with each stack Dk
in depth is required to perform the bit order reversal and
equalize the latencies of all decoded bits [6]. The overall
latency of the K-pointer trace-back technique with the two-
stack structure is (K + m + 2) * D+ W, assuming L=mD.

5. TRADEOFFS BETWEEN AREA AND
COMPUTATION TIME

Let the propagation delay of an ACS unit be T3 and the data
path be pipelined to N levels. If the delay of each pipelin-
ing latch is t;, then the delay per stage of the pipelined
ACS unit becomes, ZetF* = T, and T < Tu. T is set
equal to the clock period (i.e. one time step). Compare the
proposed VD with the purely state-parallel VD (where one
ACS unit is assigned to every state). The global cycle time
of our VD is increased by a factor of M&l—ﬂ& =

23m+-e+3y
1+ =%

reduced by a factor of 27+ "+31, The tradeoff between the
hardware complexity and the execution time is then given
by (1 + zjm-’;'hl) * t=i77; * 57=+%5r Which is approx-
imately equal to %,— * iﬁ =] %:' < 1. Since the number
of global communication links is also reduced by a factor
of 23mt"+i1 e conclude that the proposed architecture
has a better than linear tradeoff between complexity and
speed. The factor 2/m*+J1 ig determined by the value of
Jm + -+ J1, and so the individual values of jm,..., 1 can-
not directly affect the performance of the VD. Hence, we
are able to choose suitable values for jm,...,J1 to obtain
different ACS unit allocations or efficient APM memory ac-
cess, and still maintain the same performance improvement.
This makes the proposed architecture highly flexible.

)* = tt 7z While the hardware complexity is

6. FOLDING THE GLOBAL TOPOLOGY

In the analysis so far, the number of supernodes is 2'* since
the kth block has been chosen at the highest level. While
any of the blocks could have been chosen at the highest level,

if the area constraints demanded 2° supernodes, where I < I;
Vi, then the global topology would have to be folded. Let
a hypernode be defined as a collection of supernodes which
have the same I’ = I, — jx MSBs. Thus each hypernode con-
sists of 2/* supernodes and the global topology consists of
2" hypernodes. All the hypernodes are processed in parallel
and each hypernode sequentially processes the supernodes
assigned to it. The scheduling and interconnections between
the ACS units in a hypernode follow the same rules as dis-
cussed in Section 3.

7. CONCLUSIONS

In this paper we present a novel architecture to implement
long constraint length Viterbi decoder for code rate k/n for
the case when k bits are input to k shift registers. The
architecture has been designed in a hierarchical fashion by
breaking the system into several levels, and designing each
level independently. The resulting architecture is very reg-
ular, achieves better than linear tradeoff between hardware
complexity and computation time. Moreover it supports
folding of the global topology without affecting the design
of the lower levels. Another notable feature of this architec-
ture is its flexibility. Different architectures can be obtained
for different parameter choices (jis), and yet all achieve
the same performance improvement as long as the value
of (ju + ...+ ji) remains fixed.

8. REFERENCES

[1] H.D.Lin and C.B.Shung,“General in-place scheduling
for the Viterbi Algorithm,” in Proc. ICASSP 1991,
pp.1577-1580

[2] P.J.Black and T.H.-Y.Meng, “A unified approach to the
Viterbi algorithm state metric update for shift register
process,” in Proc. I[CASSP, vol.5, 1992, pp.629-632.

(3] F.Daneshgaran, VLSI Architectures for Parallel Imple-
mentation of Long Constraint Length Viterbi Decoders.
Ph.D. thesis, Univ. of California, Los Angeles, 1992.

[4] C.Y.Chang and K.Yao, “Systolic Array Processing of
the Viterbi Algorithm,” IEEE Trans. on Information
Theory, pp.76-86, Jan 1989.

[5] R.Cypher and C.B.Shung, “Generalized Trace-back
Techniques for Survivor Memory Management in the
Viterbi Algorithm,” Journal of VLSI Signal Process-
ing, vol.5, pp.85-94, 1993.

[6] G.Feygin and P.G.Gulak,“Architectural tradeoffs for
survivor sequence memory management in Viterbi de-
coders,” IEEE Trans. Commun., pp.425-429, Mar.
1993.

2746

