A REAL TIME SOFTWARE-ONLY H.261 CODEC

Katherine Wang, James Normile, Hsi-Jung Wu,
Dulce Ponceleén, Ken Chu, and Kah-Kay Sung

Advanced Technology Group
Apple Computer, One Infinite Loop, Cupertino, CA 95014

ABSTRACT

Video and audio conferencing over networks is becom-
ing increasingly popular due to the availability of video and
audio I/O as standard equipment on many computer systems.
So far, many algorithms have concentrated on playback only
capability [1]. This generally results in unacceptable real-time
performance with respect to latency and encoder complexity.
We describe a software-only system that allows full duplex
video communication. For our analysis and implementation
we chose a DCT based method that uses motion estimation
and is modelled on the CCITT H.261 standard.

We begin with a brief discussion of the algorithm and
follow with an analysis of the computational requirements
for each major block. The results presented show the effect of
computational simplifications on signal to noise ratio and im-
age quality. In our conclusion, we examine the processing
needs for full resolution coding and project when this will
become available.

1. INTRODUCTION

The conventional approach to teleconferencing has been
to use dedicated hardware for compression and decompres-
sion. This viewpoint assumes that the computational require-
ments are beyond the capabilities of general purpose proces-
sors. Some of our earlier work [2] showed how a small num-
ber of specialized signal processors could be used to achieve
real-time compression and decompression. Since then there
has been a four to eight fold increase in the performance of
general processors. Our goal is to provide real-time simulta-
neous encode and decode on a single general purpose proces-
SOL.

We chose to implement the CCITT H.261 [3] video codec
because of its widespread acceptance as a video conferencing
standard and its ability to deliver good quality video at low
bit rates. Undoubtedly, higher quality compression techniques
will be developed in the future; however, in our opinion the
H.261 standard offers the best overall performance at present.
The target characteristics of our codec are 10 frames/sec of
QCIF 176x144 sized frames simultaneously encoded and de-
coded at bit rates from 64 kbits/s to 384 kbits/s. The size and
frame rate are near the lower threshold for acceptable visual
performance.

The H.261 encoder consists of a forward path com-
prised of motion compensated error computation, followed
by DCT, scalar quantization and lossless coding and a feed-

2719

back path using inverse quantization followed by inverse
DCT and frame integration. Table 1.1 shows a breakdown of
the main computational blocks. Clearly motion estimation
dominates the numbers. As a first approximation, we re-
moved motion estimation and allowed only intra or inter
block coding. This required 3-5 times the bandwidth to
achieve the same SNR level [4]. Even with the increased
bandwidth we felt that the image quality was unacceptably
poor. In the final implementation, we use a sparse motion
estimation technique which provides much of the benefit of
exhaustive search at a small fraction of the computational
expense.

1.1. Compute Requirements

The computational requirements for a standard H.261
implementation is prohibitively high for today’s class of per-
sonal computers. Table 1.1 shows a breakdown of the opera-
tions per second required for the major functional blocks of
the algorithm assuming QCIF (176x144, 10) frames/s, and
exhaustive search motion estimation within the +/- 15 pixel
search range. The inverse DCT, inverse quantization and in-
verse color transformation operations are assumed to have
the same computational requirements as their forward coun-
terparts. No estimate is given for the Huffman encoding, which

Table 1.1 Breakdown of Compute Requirements

Mult/frame Adds/frame

DCT 123552 275616
Quantization 38016 38016
Inverse Quantization 38016 76032
Motion Estimation 22809600
Motion Compensation 38016
Huffman Decoding 89100
RGB to YUV Trans 126720 101376
Decoder 288288 580140
Encoder (no Mot. Est) 576576 906048

(with Mot Est) 576576 23715648

Table 1.1: Estimates for codec computational requirements. From
these numbers it appears to need about 15 million operations per
second for full duplex encode and decode. Practically these opera-
tions are rarely if ever completed in one cycle. I/O operations are
also ignored. Our experience is that it requires 2-4 times the ex-
pected compute to perform the operations. The decoder computa-
tion is about half that of the encoder (without motion estiration).

0-7803-2431-5/95 $4.00 © 1995 |[EEE

Color + T

Transform| per i @ [osslessH
Classify
Block
—

Mc Hperlffel Q!

Figure 2.2(a): Encoder Structure.

is computationally simpler than Huffman decoding.

2. CODEC STRUCTURE AND ENHANCEMENTS

2.1 Overview

We generate bitstreams which are compatible with the
H.261 standard. However, we have adapted the algorithm to
be suitable for software-only implementation. Figure 2.1 and
2.2 show the encoder and decoder structure. A block classi-
fier chooses among a number of different DCTs and inverse
DCTs. We have combined the DCT and quantization stages
to minimize the number of memory accesses. Analogous op-
timizations are performed in the inverse DCT and the inverse
quantization stages. In the following sections we show how
the complexity of the motion estimation, the transform, and
the lossless coding stages can be reduced. Performance mea-
surements for individual blocks are presented in [5].

2.2 Motion Estimation

If a full search, block matching algorithm is used, mo-
tion estimation is the single most expensive stage. In our cur-
rent encoder, we use a low-complexity motion estimator which
may yield suboptimal vectors but takes less than 10% of the
encode time.

We have made a number of simplifications to the con-
ventional block matching scheme. (1) In our scheme, motion
estimation is performed on a sparse grid of macroblocks. Vec-
tors for interstitial macroblocks are interpolated from the sur-
rounding vectors of macroblocks on the grid. (2) For each
macroblock on the grid, we use a hierarchical block-match-
ing scheme. That is, we sample the search area coarsely and
match on those points. From the best match, we define a
smaller search area and repeat the process more finely. The
process is recursively performed until the search area degen-
erates to one point. (3) Furthermore, the block matching is

>

Block
Lossless Class

Q! —>ﬁ
Y

Mmc'

Delay Color ‘>

Figure 2.2(b): Decoder Structure.

performed only on half of the pixels in the block. The candi-
date pixels are chosen in a checkerboard pattern. (4) Finally,
the search is terminated when the motion compensated error
falls below a threshold.

2.3 Adaptive transform

The Discrete Cosine Transform (DCT) has been exten-
sively used for image compression because the transform com-
pacts the energy effectively into lower frequency coefficients
for typical images. We exploit this fact in our block categori-
zation mechanism which is described later.

The DCT has received much attention over the last ten
years and various optimizations for its efficient calculation
have been introduced. We implemented a variety of methods
before settling on the Chan-Ho approach [6]. In an initial test
of functionality we used the Chen algorithm which is sepa-
rable, ie. it computes a one dimentional DCT for every row
and column of a block.

The second version of the codec used Arai et. al.’s al-
gorithm. In this method, the DCT coefficients are not com-
puted explicitly and require only five multiplications for an
8-point DCT. A further scaling step is needed for the explicit
calculation of the coefficients. Arai et. al.'s approach is use-
ful when the scaling step can be combined with the quantiza-
tion, this is the case for JPEG. For H.261 we were unable to
find an efficient way to merge the scaling and quantization.
Our approach of using large table lookups proved inefficient
in its use of the RISC architecture.

The Chan-Ho algorithm, a non-separable approach, ex-
tends a 1-D technique to 2-D by using a vector-radix decom-
position, The main advantage of this method is its computa-
tional efficiency. It requires 25% less multiplications than
the separable approach of Chen et. al.

We reduce the computation when the input block or the
transformed coefficients exhibits a simple form. The codec

2720

distinguishes among fours types of 8x8 blocks: those with all
zeros (Zero Blocks), blocks with only the DC coefficient (DC
Blocks), 8x8 blocks which have nonzero transform coeffi-
cients only in the lowest frequency quadrant, a 4x4 of the 8x8
(4x4 Blocks), and regular blocks (8x8 Blocks). In the encoder
we detect whether a regular 8x8 block can be approximated
by a simpler type. This detection is performed by computing
statistics on the input 8x8 block. In particular, we define block
energy measurements to capture the magnitude of the energy
in the block and whether it is principally high or low fre-
quency energy. An adaptive control mechanism set thresh-
olds to control the percentages of various block types used in
the encoding process. At the decoder, special block types are
detected after the entropy decoding stage and simplified in-
verse quantization and transformation are performed accord-
ing to the block type detected. We can trade off speed for
quality by adjusting the fraction of each block type allowed.
Clearly in the case of a skipped block, no further computa-
tions are required for encoding or decoding. Similar simplifi-
cations occur for DC only block types.

Tables 2.2a and 2.2b show the different block types re-
sulting naturally from DCT and quantization. All blocks are
encoded as standard 8x8 Blocks, the decoder detects the re-
sulting block type and uses the appropriate IDCT and inverse
quantizer. Decoder block type detection is lossless. Note
that for lower bitrates the decoder already detects many trans-
formed blocks to be non-8x8, hence forcing non-8x8 block
types in the encoder does not result in a significant speedup.

2.4 Entropy Coding

Huffman coding is performed on block headers and on
the runlength coded transform coefficients. The encoding pro-
cess is fixed-to-variable length and is implemented as table
look ups. The decoding process is variable to fixed length
and is slightly more complicated. We used multilevel look up
tables [8] in the Huffman decode. The idea is to simultaneously
decode multiple bits. To start the process, a block of N bits is
grabbed from the bitstream. If one token can be decoded from
the block, then the token is decoded, and the unused bits are
returned to the bitstream. If more bits are needed to decode a
token, a second block of M bits is grabbed from the bitstream.
As many blocks as necessary are grabbed from the bitstream
until a token is decoded. Unused bits are replaced in the
bitstream.

We have found that bi-level tables are sufficient to de-
code the bits efficiently. Typical first level table widths are 8
or 9 bits, resulting in 256 or 512 entry tables. Second level
tables are much narrower, often 2 or 3 bits.

A simple improvement to multi-table decoding is to de-
code multiple tokens whenever possible . Since most com-
mon codes are short, we may be able to decode multiple to-
kens much of the time if our tables are sufficiently wide.

3. RESULTS

We have achieved 10 frames/s encode and decode at
QCIF resolution with a software implementation of H261.

The encoder timing data in Table 3.1 includes motion
estimation and compensation, color transformation, filtering,
DCT, quantization, entropy coding, and reconstruction of the
decoded frame in the feedback loop. Similarly, decoder tim-
ing in the table covers the analogous functions. Performance
is affected by data rate as a result of the adaptive transform
used. Table 3.2 shows a two fold change in decode speed
over the range 64-384 Kbits/s. The encoder is less sensitive
and varies from 16 to 12 frames/s over the same range of data
rate.

Table 3.2 shows SNR results for a typical talking head
sequence at different bit rates. For the case where all blocks
are encoded as standard 8x8’s, the SNR ranges from 29-33
dB as the data rate varies between 64 -384 kbit/s . Using all
4x4’s, which generates noticeably blurred video, results in a
1-3 dB drop. The larger drops occur in high bitrates where
4x4 block types are less likely to occur naturally as a result of
quantization. A mixed block type case, where blocks are
forced to Zero Blocks, 4x4, DC or 8x8’s according to block
content, results in subjectively better results with a lower
drop in SNR . The block type mix used is shown in Figure
3.1. An interesting side effect of block categorization is im-
proved quality at low data rates. This is probably due to the
fact that forcing low energy blocks, which contribute littte to
SNR, to zero allows bits to be used in other areas where they
have more impact on SNR

4. CONCLUSIONS
This paper demonstrates that real-time encoding and de-
coding of transform based compression is feasible if an adap-
tive transform is used and motion estimation is performed
sparsely. The resultant quality degradation from these com-

Table 2.2a: Percentage of block types in Y channel

kbits/s 8x8 4x4 DC Zero
64 152 % 19.6 % 71 % 58.1%
128 434 15.4 5.5 35.7
224 67.7 10.5 4.0 17.8
384 84.1 6.2 3.8 5.9

Table 2.2b: Percentage of block types in U,V channels

kbits/s 8x8 4x4 DC Zero
64 6.7 % 147 % 8.1% 70.4 %
128 18.9 22.7 7.2 51.2
224 36.3 26.2 6.0 31.5
384 63.4 20.8 5.7 10.1

Table 2.2: Percentage of decoder detected 8x8, 4x4, DC, and Zero Blocks.
Y is calculated as a fraction of total Y blocks and UV as a it color
talking-head of frame size 176x144.

2721

promises is not significant. We believe that this implementa-
tion marks an important turning point in the growth of tele-
conferencing. It is now possible to proliferate this technology
quickly without the need for specialized hardware. At present
QCIF seems to be the limit in terms of available computation.
CIF would appear to require 4 times this capability; however,
allowing for some further algorithmic improvements and the
fact that CIF frames may contain less information than 4 QCIF
frames, it will probably take 2-3 times current capability for
full CIF encode and decode at 10 frames/s. With processor
speed doubling every 18 months, we expect full CIF perfor-
mance by mid to late 96.

Hardware based systems will continue to be used for
higher performance and in applications where a high perfor-
mance processor is not already available. Such areas include
dedicated videophone and consumer products where integra-
tion of functions and high volumes lead to cost efficiencies.

5. REFERENCES
[1] K.S. Wang, J.O. Normile, H. Wu, A.A. Rodriguez, "Vec-

Table 3.1a: Encoder timings in frames/sec

kbi X 11 4x4 mi

64 16.4 19.2 22.2
128 14.7 16.4 17.5
224 13.3 14.5 18.9
384 12.0 13.9 15.9

Table3.1b: Decoder timings in frames/sec

kbit 1 11 4x4

64 454 47.6 52.6
128 31.2 28.6 34.5
224 23.8 227 357
384 20.0 20.8 27.8

Table 3.1: Timing results from a QCIF talking head sequence
using a PowerMac 8100/80 (80 MHz 601) running System 7.1. Tim-
ing does not include QuickTime managed frame grabbing. Brack-
eted numbers are in frames/s. The mixed block types ratios are
shown in Figure 3.1.

Table 3.2: SNR in dB

tor-quantization-based video codec for software-only play-
back on personal computers,” to appear in Multimedia Sys-
tems, Springer-Verlag, Dec. 1994.

[2] J.O. Normile, and D. Wright, "Image compression with
coarse grain parallel processing,” ICASSP'91, pp. 1121-1124.
[3] CCITT Recommendation H.261, "Video Coding for au-
diovisual services at px64 kbits/s,” Geneva, Aug. 1990.

[4] A.N. Netravali, and B.G. Haskell, Digital Pictures Repre-
sentation and Compression, Applications of Communications
Theory, Plenum Publishing Corporation.

[5] H. Wu, K.S. Wang, J.O. Normile, D.B. Ponceleén, and K.
Chu, "Performance of a real-time software-only H.261 codec
on the Power Macintosh," to appear in SPIE 95

[6]1 S.C. Chan and K. L. Ho, "A New Two-Dimensional Fast
Cosine Transform Algorithm," IEEE Transactions on Signal
Processing, Vol 39 No. 2, pp. 481-485, Feb. 1991.

[8]1 K. Chu, J.O. Normile, C.L. Yeh, and D. W. Wright, "Vari-
able Length Decoding Using Lookup Tables," U.S. Patent No.
5,235,053, Oct. 1993.

Block Types Y

kbits/s all 8x8 all 4x4 mix
64 29.4 28.3 29.0
128 30.7 29.5 30.4
224 31.6 29.9 31.2
384 33.2 30.2 31.9

Table 3.2: Signal to Noise Ratio (SNR) values for different combi-
nations of encoded block types at different datarates. SNR does not
include color conversion operation.

70
60 —X——Zero
50 X —X—x
40 —&—DC
R
30 X
20 —O——LF
! 8 ——0—— 43
<+ © < <
© N oY ©
- N (22
Kbit/s
Block Types UV
60
50 X"‘x——x_x X Zeo
40 —&—DC
X 30
20 —O0——1LF
10
0 —O0——38x8
< © < <
© o (oY, ©
- oY} o
Kbit/s

Fig 3.1 Distribution of block types at different bit rates. These re-
flect the set of thresholds we used to achieve good image quality.

2722

