VIRTUAL PROTOTYPING OF EMBEDDED DSP SYSTEMS

Vijay K. Madisetti, T. Egolf, S. Famorzadeh, L-R Dung

Electrical and Computer Engineering
Georgia Tech, Atlanta, GA 30332-0250, USA
vkm@eedsp.gatech.edu

ABSTRACT

The Rapid Prototyping of Application Specific Signal Pro-
cessors (RASSP) program initiated by the Advanced Re-

search Projects Agency (ARPA) has proposed a design pro- |

cess that is based on a new design methodology called Vir-
tual Prototyping, wherein VHDL models of hardware com-
ponents are integrated with application, control and diag-
nostic software to rapidly prototype complex embedded DSP
systems. This paper discusses this new methodology, and
compares the RASSP process with current design practice
(circa 1998).

1. INTRODUCTION

The ARPA-sponsored RASSP program is targetted towards
the design and prototyping (from concept to product) of
large embedded DSP systems. Examples of systems of in-
terest range from efficiently packaged single-board embed-
ded DSP systems (as found in high-performance worksta-
tions using MCM-based chassis) to large multi-chassis radar
signal processor systems which typically have performance
requirements ranging between 20-1000 BFLOPs (billions of
floating operations per second) of computational intensity
at pixel rates of 10 Mhz, within the form constraints of
size, weight, and power of 2-50 ft, 100-1400 lbs, and 1-
10 KW, respectively. Boards represent subsystems, while
multiboard configurations can represent complete systems,
and involve hardware fabrication, assembly, and integration
with application, control and diagnostic software. Clearly,
the RASSP program is of strategic importance to industrial
and military competitiveness [2].

RASSP promotes a new design methodology for rapid
systems prototyping that differs from current design prac-
tice. This difference is first described in a manner so as to
introduce a new design methodology for rapid prototyping
known as “virtual prototyping”.

2. CURRENT DESIGN PRACTICE

Figure 1 represents a high level depiction of current de-
sign practice (circa 1993) as captured in {4]. The design
process flow diagram starts at the level of the represen-
tation of the application (algorithmic) requirements. The
algorithm to be implemented (e.g., a STAP/SAR radar sig-
nal processor system) is specified in an executable form (a

Research sponsored by ARPA (ESTO), US Dept of Defense:
RASSP contract F33615-94C-1493, 1994-1997.

2711

CURRENT PRACTICE {1983)

Manual = Siicon
Application
Manual
{ N TeSTPROTOTYPE 1 FELD
i Behavior i) PROTOTYPE
iStimuii & Test
T
i Porformance |
iC ints |
e
'Past experience”
Shaded areas represant hardh bly, fabrication or

Figure 1: The current practice design model {4] showing de-
pendence between the software and hardware design and de-
velopment cycles, with silicon fabrication and assembly/test
(shaded regions) incorporated into three design loops (a, b,
¢). This interdependence greatly slows down the design and
prototyping process, especially if ASICs are to be designed
on the critical path.

VHDL/Ada, or a C/Matlab program) together with stimuli
and test benches. In addition, the system has certain per-
formance characteristics and constraints that must be met
by the prototype (representative values being given in the
preceding paragraphs).

After an appraisal of the application characteristics is
completed, a partitioning of the application onto hardware
(HW) or software (SW) is carried out manually by an ex-
perienced hardware system designer, and is to some degree
ad hoc. Those portions of the systems that are to be cast
as ASICs are selected,and commercial-off-the shelf (COTS)
components such as processors and memories are chosen as
targets for mapping SW components, and inital estimates
as to the allocation of these parts are drawn and reviewed.
The application is partitioned into subsystems (boards) so
that each of these boards executes a portion (in SW or
HW) of the algorithm, and their ensemble (the multiboard
system) will hopefully prototype the required radar system
with satisfactory performance.

Since software (SW) cannotexecute without target hard-
ware, application and control software developed for each
of these boards can only be tested and debugged after the

0-7803-2431-5/95 $4.00 © 1995 IEEE

hardware fabrication (assembly) and test of the board is
completed (which can take 2 — 4 months per board). After
the hardware board is fabricated, application and control
code is debugged in an iterative design cycle a of Figure 1.
After successful design and test of the board-level HW /SW
subsystem, the multi-board system is integrated manually,
wherein the software and the hardware are merged and
tested via diagnostic software and input from the applica-
tion (stimuli and test). This integration is done manually
and involves silicon fabrication, manufacture and assem-
bly/test, and is iteratively refined until an acceptable test
prototype is synthesized. The three software design loops
a, b, and c all include hardware fabrication, and the final
field prototype is realized after satisfactory integration and
test, often involving a total concept to prototyping delay
of 3 — 4 years, at the cost of 20 — 30 man-years. In one
representative operational (late 1992) STAP radar signal
processor system (studied by these authors), the final HW
count was about 150 boards incorporating a total of about
25,000 LSI/COTS components including an ASIC front-
end filter and a 64-processor TMS320C30-based processing
engine. The final SW count in lines of source code {LOSC)
was 5K LOSC for the DSP/radar signal processor appli-
cation, 30K LOSC for control, 60K LOSC for diagnostics,
and 25K LOSC for functional and performance verification,
representing a 20 : 1 ratio of system-level design code size
to DSP application code size [1].

3. A CANDIDATE RASSP DESIGN FLOW

In a candidate RASSP design flow of Figure 2, the primary
difference from Figure 1 is that the hardware fabrication
and assembly at the subsystem and system-level is elim-
inated from the in-cycle design loop {4]. The software is
ezecuted (and designed) on virtual hardware (in the form of
VHDL models or hardware modelers and emulators) long
before any HW fabrication and assembly is begun. This
“virtual prototyping” environment significantly speeds
up the HW/SW co-design and co-verification cycle through
the use of models at multiple levels of design abstraction
in the constituent VHDL libraries. The board-level and
the multi-board integration is simulated and tested, addi-
tiopal control and diagnostic software is developed and de-
bugged entirely in a user-friendly software environment. If
the model libraries were accurate, the next stage could itself
be that of the field prototype. However, at least one RASSP
prime has planned to include the actual hardware test pro-
totyping stage within the RASSP design process to validate
and improve upon the process of virtual prototyping.

In addition to virtual prototyping, Figure 2 introduces
an additional stage called conceptual prototyping which
involves early design, replacing the manual HW/SW parti-
tioning block of the “current practice” of Figure 1. Concep-
tual prototyping utilizes automated tools that allow rapid
estimation and evaluation of algorithmic, functional, archi-
tectural and enterprise-related tradeofts early in the design
process. A few candidate conceptual prototypes are then
culled from the dozen or so generated at this stage, and
then passed on to the virtual prototyping stage. Here, ex-
tensive evaluation and detailed design is done in virtual
hardware and software leading to successful and rapid inte-

No hardware in in-cycle design loops.

Off-cycle updates

Application

FIELD
PROTOTYPE

(
|
= & Verification
_.] Co-X

| I Virtow AW

A d | |Design & Verit.

HWISW 1| Software
Partitioning H

N

VHDL HW Model Interoperable Tool
Reuse Libraries Suites/Enterprise Int

i Oft-cycle updates

HW Modeiers tomated Metrics
Emulation tools Collection

Figure 2: The mature RASSP Design Process (Fall 1997-
98) with hardware-less in-cycle HW/SW co-design loops,
enterprise integration, interoperable tool suites, automated
metrics collection, and an additional stage for rapid early al-
gorithm, functional, architectural, and automated HW /SW
partitioning — “conceptual prototyping” [4].

gration, again through the use of HW/SW reuse libraries,
interoperable tools. and enterprise integration.

4. VIRTUAL PROTOTYPING

Two types of models are defined for the purposes of this pa-
per — bus-interface (BIM) and fully-functional (FFM) [3].
The BIM models the timing behavior of a component’s in-
terface (with respect) to its surroundings. Thus timing and
format of output bus drivers for data, control/ addresses,
etc. are modeled as accurately’ as possible, while internal
structure, state, or algorithmic values are not necessarily
modeled. Thus BIMs are more suitable for providing rough
estimates of system performance during conceptual proto-
typing. The FFM models all documented complexity of a
physical component in a VHDL behavioral description. All
timing and internal register states are modeled, in addi-
tion to full functional emulation of hardware behavior. In
the virtual prototyping example of the next section, a FFM
of the i860XP (developed at Georgia Tech), and BIMs of
the memory, memory controller, FIR chip with buffer, and
decoders were used. The board-level system was designed
and debugged completely within a software-only environ-
ment using a VHDL simulator [2] within four man-days.

IWhile BIMs for SSI and MSI parts are often accurate in
terms of timing, complex VLSI parts (i.e., RISC processors, DSP
chips, or communication routers) whose timing is both data- and
internal state-dependent (cache, interrupts, resource contention,
etc) can seldom be accurately modeled by BIMs. Therefore, the
authors recommend the use of FFMs for complex VLSI parts.

2712

"DATA BUS _

DSP BOARD

Figure 3: A Board-Level Virtual Prototype

4.1. HW/SW Co-Design of a DSP Board

A high-level description of the target system is shown in
Figure 3. An equalizer is implemented as a FIR filter. Its
design is to be finalized during the virtual prototyping ef-
fort. The FIR is loaded with incoming data and stores its
output in a 128 word buffer. The i860 ? should read the
data from the FIR’s buffer (by selecting its buffer for a
read at an appropriate time). The buffer writes the data
onto the data bus which loaded by the i860XP into its ap-
propriate internal registers. After processing the data (the
design must allow the capability to change this processing
software easily at the user’s discretion), the 1860 selects its
local memory (RAM) (and de-selects the FIR’s buffer). The
memory controller provides the appropriate control signals
that allow the i860 to interface with a static RAM. The
lower significant address bits are used to store the data in
the RAM. The entire cycle then begins again, with the FIR
processing new data in the meanwhile.

This example is typical of the functionality required of
board level designs, and was chosen to be specific enough
to highlight the different trade-offs that are available during
the virtual prototyping process.

4.2. Model Integration

All the VHDL models (FFM or BIM) were integrated to
virtually prototype a DSP board with an-off-the-shelf RISC
processor, memory, a custom memory controller, and a FIR
filter ASIC with internal buffer. The operations of the vir-
tual prototype (to be verified and evaluated) can be de-
scribed as follows — the FIR filter receives data from an
external source, filters the result and upon request will pro-
vide the data to the i860 in a first-in-first-out (FIFO) man-
ner. The i860 processes the data and will store the result
back to its local memory. The FIR filter is mapped off the

2Nothing in the process of virtual prototyping precludes the
use of any other COTS processor at any point during the design
cycle, as long as its FFM is available.

memory space of the 1860, and should be capable of di-
rectly connecting to the i860 with no extra glue hardware.
In order to test the board, some software was written for
the 1860 as a compiled program that would perform a read
operation to the address where the FIR filter was mapped,
and then store the result in the local memory immediately.
After the load and store operations, the 1860 idles for 30
cycles, before starting over. The FIR and the i860 operate
at 2.667 MHz and 40 MHz, respectively.

4.3. Timing Verification

Once the models were integrated together, the virtual pro-
totype was simulated and debugged for correct operation.

4.3.1. Proper Timing

Two snapshots of the signal drivers on our virtual proto-
type is shown in Figure 4. The timing diagrams show the
state of all related signal drivers at the time the 1860 is try-
ing to read data from the FIR. The i860 initiates a read
by placing the FIR’s address on the bus and activating the
address strobe signal, ADS_N. This can be seen in the tim-
ing diagram at time 11227.5 ns. The address lines are fed
to a decoder that selects either the memory or the FIR fil-
ter by asserting either FIR_.CS or MEM_CS, respectively.
After a delay of 5 ns (due to the propagation delay of the
decoder), the FIR_CS signal is asserted by the decoder at
time 11232.5 ns, After an additional delay of 5 ns (due to
the propagation delay of the chip select logic in the FIR
filter) at time 11237.5 ns the FIR filter begins driving the
bus. Valid data is put on the bus by the FIR filter 5 ns af-
ter address strobe, ADS_N, is deactivated, at time 11257.5
ns. At the same time the BRDY_N signal of the i860 is
pulled low by the FIR filter to notify the i860 that the data
is ready on the bus. The 1860 will then read the data on
the next rising edge of its clock (or 11266 ns) and the read
cycle is completed. The next operation after the read is a
write to the memory, where the FIR data is put in the local
memory of the i860 (Fig. 4, upper half).

4.8.2. Improper Timing

A common design error on any bus-based system is that
of signal contention, when more than one source is driving
the bus. In our virtual prototyping example, the hold time
of the FIR filter was increased intentionally to create a bus
conflict. Previously, the FIR chip would release the bus 5 ns
after the chip was deselected(when FIR_CS was deasserted).
In a new experiment, the hold time was increased to 40 ns.
With identical application code executing on the i860XP,
the processor will try to write the value (just read from
the FIR filter) to the local memory. Concurrently (due to
the increased hold time) the FIR filter is still driving the
bus and a signal contention occurs. These points are also
illustrated in the lower part of Figure 4 with the FIR_CS
being deasserted at time 11266 ns. Adding a 40 ns hold
time of the FIR will result in 11306 ns as the time at which
the bus is released by the FIR filter. Concurrently, the i860
tries to perform a write to the memory at time 11277.5 ns
as indicated by the ADS_N signal going low. The 16 bit
data that is to be written to the memory

2713

'z,u«.m sev tmw wepesy 1ew pae wees upeees

sel Count: 13

Sel Mode: MEW

Pegin Time: 1121614 ns

(KRNI

.............

Sytsa fe Vew Diphy AM St Sesct Oples

sel Comat: 13

Sel mde: MW Begin Time: 14215.33 a5

b

Fig

is put on the upper data bits of the data bus (31 downto
16). At this time the lower 16 bits of the data bus are
being driven by two different sources. 1860 and FIR chip —
one driving it with a value of 0x0000004600000000 and the
other with 0x0000000000000046. resulting in the value of
0x00000046000000XX (Fig. 4. lower half).

5. CONCLUSIONS

This paper demonstrates how VHDL models of compo-
nents. whether they be COTS or custom VLSI parts. can
be integrated together to design and debug embedded sys-
tems in their entirety {with application. control and diag-
nostics SW) using a new RASSP-based hardware-lessdesign
methodology. called virtual prototyping. Virtual prototyp-
ing relies on the availability of a rich set of VHDL models
for components. and a number of RASSP-funded efforts are

in progress populating these libraries. \We have recently pro-
totvped larger multi-board multiprocessor RASSP systems
with encouraging results in collaboration with a RASSP
prime.

REFERENCES

[1]. D. Martinez. J. MacPhee. “Real-time Testbed for Space-
Time Adaptive Techniques.” Proc. IEEE Adaptive An-
tenna Svstems Symp.. November 1994.

[2]. Proc. of the First RASSP Workshop. August 1994
Advanced Research Projects Agency {ARPA). US Dept. of
Defense. Arlington. VA.

[3]. IEEE 1076-93 Standard VVHDL Reference Model. ISBN
[-55937-376-8.

[4]. V. Madisetti. “Vive La Difference: RASSP vs Current
Practice (1993}." The RASSP Digest. Vol. 1. No.1. Novem-
ber 1994.

2714

