ASSESSING AND IMPROVING CURRENT PRACTICE IN THE DESIGN OF
APPLICATION-SPECIFIC SIGNAL PROCESSORS

G. A. Shaw and J. C. Anderson

MIT Lincoln Laboratory
244 Wood Street
Lexington, MA 02173-9108
shaw@Il.mit.edu

ABSTRACT

The Department of Defense ARPA program for Rapid Pro-
totyping of Application Specific Signal Processors (RASSP)
exists to significantly improve the process by which embedded
digital signal processors are developed (prototyped) and sup-
ported (maintained and upgraded). As used in the RASSP
program, the term prototype signifies a system that is @ pre-
cursor to a deployed system, but still meets all of the essen-
tial performance goals and is designed to facilitate main-
tainability and upgradability. In this paper, current practice
in the design of embedded digital signal processors, as ez-
emplified in the traditional waterfall design methodology, is
ezamined and shortfalls in the design methodology and sup-
porting tools are identified. Opportunities for tmproving the
traditional design practice are then identified and evaluated
in terms of potential benefits, as well as impediments, to
implementation and adoption by the community.

1. INTRODUCTION

Within the past 10 years, high-end signal processing appli-
cations have grown from millions of operations per second,
implemented in hardwired or uniprocessor architectures, to
billions of operations per second implemented on arrays
of programmable multiprocessors. At the same time, the
functionality that was once implemented at the board level
with large-scale integrated circuits has been subsumed at
the chip level in very large scale integrated circuits contain-
ing millions of transistors and hundreds of pins, employing
clock rates approaching 100 MHz and complex software de-
velopment environments. The introduction of more com-
plicated building blocks, higher clock rates, and tightly-
coupled hardware and software environments has opened
a gap between traditional design and verification methods
and the complexity and supportability required for contem-
porary digital signal processors. Furthermore, with new
DSP chip technology being introduced annually, traditional
methods of optimizing a design for a given application and
associated processing engine are no longer cost-effective or
appropriate in terms of supporting an upgrade path.
Applications requiring embedded signal processors are
as numerous and diverse as the methodologies employed to

This work was sponsored by the Advanced Research Projects
Agency, Electronic Systems Technology Office.

2707

V. K. Madisetti

Electrical and Computer Engineering
Georgia Institute of Technology
Atlanta, GA 30332-0250
vkm@eedsp.gatech.edu

Table 1: Current Practice Views

| VIEW EXAMPLES
Process Design Flow, Productivity, Test, Reviews
Resource | Development Time, Cost, Tools, Libraries
Product Form, Performance, Defects, “...ilities”

design and build them. Consequently, there is no unique
model of “current practice” as it applies to the design of
application specific signal processors. Nevertheless, a rep-
resentative model of current practice is essential to the
RASSP program in order to assess where improvements are
needed, and also as a basis for measuring progress of the
RASSP program toward the goals of reduced design cycle
time, reduced cost, and improved quality.

The focus of the RASSP program is on high-performance
form-factor constrained signal processors consisting of any-
where from a few to hundreds of processing engines. The
models described here are an attempt to characterize, at
least in an average sense, the current practice in develop-
ing such state-of-the-art embedded signal processors at the
inception of the RASSP program, circa 1993.

2. CURRENT PRACTICE MODEL VIEWS

In developing a representative or “industry standard” model
of current practice, there are at least three views of interest
to the RASSP program: The process view emphasizes is-
sues such as the steps or methodology followed, the degree
of concurrent activity, and the productivity achieved. The
resource view might also be termed generalized cost, and
emphasizes the people, tools, time, etc. required to develop
a prototype signal processor. The product view emphasizes
issues related to the soundness and performance of the prod-
uct, as well as adherence to requirements. The three views
are clearly not independent. For example, methodology af-
fects development cost (resource) and quality (product).

0-7803-2431-5/95 $4.00 © 1995 IEEE

2.1. Process View

The traditional design methodology, which is embodied in
military process standards such as DOD-STD-2167A for
softwarc development, is a waterfall design process, as il-
Justrated in Figure 1. The underlying concept behind the

REQUIREMENTS

ARCHITECTURE

E«PLEMEWATION

TEST
MAINTAIN

Figure 1: Waterfall development methodology.

waterfall design process is a progression through various lev-
els of abstraction, or phases, with the intent of fully charac-
terizing each level of abstraction before moving to the next
level, and providing a comprehensive work package at each
phase. Strict adherence to the waterfall design method-
ology is impractical, in part because the requirements for
an embedded signal processor are often vague at the be-
ginning of a project and the processor is often subject to
significant design changes. For example, in a radar system,
waveforms, processing algorithms, and subsystem interfaces
may all be modified during the course of signal processor
development. Nonetheless, this methodology is characteris-
tic of current practice, particularly in the defense industry.
While following the waterfall design methodology does not
preclude attaining the RASSP goals of rapid design cycle
time, low life cycle cost and model year upgrade capabil-
ity, the waterfall design methodology does tend to foster a
number of bad design practices including:

1. Low exploitation of concurrent engineering

2. Emphasis on wrong problems early in the design phase
3. Inflexibility late in the design phase
4

. Low level of customer interaction and subsequent sat-
isfaction

5. Significant rework and cost resulting from not discov-
ering design flaws until the integration phase.

Figure 2 is a simplified representation of a waterfall
design methodology for embedded signal processor design.
Perhaps the most significant deficiency in the methodology
is that hardware subsystems and application software are
not integrated until late in the process, and significant de-
sign flaws may go undetected until the integration step.

2.2. Resource View

Figure 3 is an cstimate of the relative distribution of cost
associated with the development of the synthetic aperture
radar (SAR) image formation processor described in {1].
A number of activitics such as program management and

SYSTEM TROCESSOK ¢ [THW aNDsw
CONCEPT REQUIREMENTS PRELIMINARY -
DEFINITION ANALYSIS i |ARcHITRCTURE |

PRELIMINARY D [AsiCHIGAAWI COTS W HW FAl &
HW DESIGN : DESIGN PROCUREMENT UNITTEST

(UIH(ARIES.. DOCUMENTATION, MANUFACTURING & TEST PLANS
PRELIMINAKRY : CSCIUSCCsy COTS SiW S/IW CODE &
S/IW DESIGN L DESIGN PROCURFMENT UNIT TEST

H/W & S/W
INTEGRATION

LEGEND: PAPER y oy
[? REQUIREMENTS (D rwovucrs
[: ACTIVITY O wevirw

Figure 2: Simplified current practice design flow.

reporting have been omitted from Figure-3 for simplicity.
The performance requirements for the processor are sum-
marized in Table 2. In Figure 3, requirements and architec-

Requirements &
Architecture

Int ti
ntegration 0%

14%

Documentation
9%

Software
Development

Manufactur
Manufacture s

18%

Hardware
Development
17%
Testing
20%

Library
Development
7%

Figure 3: Relative dollar cost associated with various de-
velopment tasks.

ture development together represent only 10% of the total,
However, once an architecture is selected, much of the devel-
opment and life cycle cost of the system, as well as achiev-
able performance, are determined. Also note that testing
and integration consume a larger percentage of cost than
the combined software and hardware development (34%
versus 22%). The software devclopment in this example
consists mainly of well-defined algorithms such as FFTs.
State-of-the-art electronic design automation (EDA) tools
to support the design flow of Figure 2 may cost as much
as $80K-$100K per single-user license, and a collection of
these tools, spanning the end-to-end process, could cost in
excess of $1M to purchase, and $150K or more a year to
maintain, excluding training costs. Despite the cost of the
tools, interoperability across tools is not assured, particu-

2708

Table 2: SAR Processor Requirements

Item Requirement
Max. Volume 2.2 cuf
Max. Power 500 W
Max. Weight 60 lbs

I/0 Rate 18/27 MB/s

Interface Fiber

Polarizations 3

Frame Size 2048 x 512 pixels
> 103 dB

Dynamic Range

larly in the case of commonly used high-level system design
tools. Computer-aided design (CAD) and computer-aided
software engineering (CASE) tools are available to support
either the hardware or software design, but there is little to
support the co-design and simulation of hardware and soft-
ware. In particular, there are few libraries and models to
support co-simulation of hardware and software, and there
are not standards for interoperability of models at various
levels of design abstraction.

3. OPPORTUNITIES FOR IMPROVEMENT

Incremental improvements in design practice occur more
or less continually, but significant improvements are almost
always due to a revolutionary change in the resources or
processes employed [2]. The shortfalls in traditional design
methodology suggest areas which might be targeted for rev-
olutionary change.

3.1. Process Improvements
3.1.1. Egzecutable Requirements

Figure 2 emphasizes the fact that current practice is to pro-
vide processor requirements in written form, often hundreds
of pages of requirements which must be interpreted and
captured in a traceabilty tool: Provision of requirements in
machine readable and executable form has the potential to
significantly reduce the ambiguity in written requirements.
The SAR benchmark described in [1] includes an executable
requirement written in VHDL which is intended to serve as
the basis for test bench generation during detailed design
and verification.

3.1.2. Virtual Prototyping

A virtual prototype [3], consisting of a software model of
the hardware executing a representation of the application
code, has the potential to uncover design flaws before the
costly step of hardware fabrication and test fixturc gener-
ation. In the case of integrated circuit design, virtual pro-
totyping has alrcady been proven to be an enabling tech-
nology for first-pass correct design. The same concepts can
be applied to board level design provided suitable models
and simulation tools are available. A virtual prototype also

has the potential to support early customer evaluation and
exploration of performance trades.

3.1.83. Successive Refinement

Unlike the waterfall development methodology, which em-
phasizes complete descriptions of the signal processor at
each level of abstraction in the design process, successive
refinement emphasizes rapid development of a less than full
function prototype to uncover potential problems early and
to influence the design through hands-on experience. The
terms successive refinement, spiral design, incremental de-
velopment, risk-driven design, are all used somewhat inter-
changeably to describe this basic approach. Spiral design
was pioneered for software development [4], but the concept
can be applied to hardware as well. Benefits of successive
refinement include the ability to involve the end user in
evaluating early prototypes, early discovery of problems in
the design concept, and improved estimates of the cost and
schedule to produce a fully-functional prototype. However,
successive refinement can be costly when hardware fabri-
cation is in the loop, and virtual prototyping represents a
potentially cost-effective methodology for supporting suc-
cessive refinement.

3.1.4. Co-development Methodologies

Co-development, or hardware-software co-design, refers to
the ability to begin with an implementation-independent
representation of the requirements for a signal processor
and evolve these requirements to a hardware and software
implementation that is optimum, or nearly so, in some
sense. Virtual prototyping supports hardware-software co-
design by facilitating the transfer of functionality between
hardware and software, enabling performance analysis and
trade-offs prior to the existence of the hardware. Current
practice predominantly relies on the experience of designers
to allocate functionality to either hardware or software early
in the design. Once the allocation is made, the hardware
and software development tends to proceed along relatively
independent paths with few opportunities created for im-
provement through trade-off analyses.

8.1.5. Parametric Cost Estimation

Parametric cost estimators (PCEs) have been shown to give
engineering managers a competitive edge by accurately pre-
dicting project costs. PCE tools, available now in stand-
alone form, can be integrated with front-end design tools
to provide a more quantitative and traceable basis for ar-
chitecture selection. In the absence of a well-defined cost
estimation methodology, critical items, such as testability,
are often overlooked in determining cost, schedule and risk
associated with candidate architectures. Representing each
candidate architecture by a set of cost breakdown structures
and applying the appropriate PCE tools helps ensure that
all relevant aspects arc considered. PCE tools also enable
assignment of numerical values for cost, schedule and risk
associated with each candidate architecture, and provide
documentation of the basis for architecture selection.

The ability to identify and quantify life cycle cost issues
is an important capability afforded by PCE tools. Hard-

2709

ware life cycle costs are a function of maintenance concept
(e.g. throw away vs. fix a failed module), and a specific
maintenance concept must be supported by the appropri-
ate built-in test features and external test equipment. PCE
tools provide a means for rapidly evaluating a large number
of maintenance concepts, and results of the PCE life cycle
analysis have a direct impact on test requirements and ar-
chitecture selection.

3.2. Resource Improvements
3.2.1. Standard Hardware Interfaces

As DSP chips continue to gain in complexity and func-
tionality, the major effort in embedded processor design
has shifted to specialized hardware for systolic processing
and the communication and control interfaces for multipro-
cessor architectures. The VME bus is a familiar example
of a standard interface which facilitates rapid development
of application hardware by promoting reuse and standard
protocols for communication. However, bus architectures
do not scale well, and interfaces with substantially higher
bandwidth and latency are required for many applications.
Designing for upgradability demands the use of standard,
scalable interfaces and memory architectures. Standard in-
terfaces are essential in promoting widespread software and
hardware reuse.

3.2.2. Reuse Libraries

DSP chip developers currently provide C-language instruc-
tion set simulators and highly optimized FFT and other
software modules with a new chip. The provision of these
tools and libraries promotes reuse on a wide scale. However,
virtual prototyping and hardware-software co-development
methodologies require many additional models at at vari-
ous levels of abstraction. Currently, such models are not
widely available, and concerns exist over the intellectual
property embodied in such models. Modeling standards in-
cluding, for example, the appropriate levels of abstraction,
are needed to support wide-spread reuse.

In the case of application software, substantial reuse has
been shown to yield gains of 4x or more in productivity for
uniprocessor development [5]. However, substantial reuse of
software in embedded signal processing is hampered by the
lack of standard communication and control interfaces, and
the highly parallel hardware. Reuse can be facilitated by
the adoption of standards and the model-year architecture
concepts described below.

3.3. Product Improvements
3.8.1. Model-Year Architectures

Programmable processing chips tend to double in perfor-
mance approximately every 18 months, and with multiple
vendors developing new chips, improved technology is avail-
able on even shorter cycles. In order to field signal pro-
cessing systems with the latest available processor technol-
ogy, the hardware and software architectures must be suffi-
ciently “portable” or standardized to support late binding
of the processor chips to the software and board level com-
munication fabric. In the case of software, this flexibility

is achieved through high-level language implementation for
the control and standardized library calls for DSP number
crunching, such as FFTs. In the case of the hardware, the
equivalent of a high-order language is a high-level descrip-
tion of the custom designs which can be synthesized into
a preferred technology, such as FPGAs. The equivalent of
the optimized DSP library is standardized interfaces and
associated communication protocols, as described in Sec-
tion 3.2.1.

3.3.2. Ezecutable Specifications

In the same way that executable requirements facilitate the
initial development of a signal processor, the final design
can also be documented in a machine readable and ex-
ecutable form. Executable specifications have long been
the norm for application software written in a high-level,
portable language. The existence of standards for hard-
ware design languages affords the opportunity to document
hardware in a similar fashion, facilitating upgrades and re-
ducing life-cycle support costs.

4. CONCLUSION

Historically, significant improvements in the required design
cycle time and cost to produce embedded digital signal pro-
cessors have been brought about by revolutionary changes
in the design process or resources comprising the design
environment. Presently, the process from schematic entry
to printed wiring board, or from CASE tool to application
code, is fairly mature. However, substantial improvements
are feasible in the front-end processes relating to require-
ments capture, functional modeling, partioning into hard-
ware and software, and designing for easy upgradability and
supportability.

A Mosailc server has been established on the World
Wide Web as a source of additional information and pub-
lications. The Lincoln Laboratory RASSP home page is
accessible via the uniform resource locator (URL)
http://www.ll.mit.edu/~llrassp/rassp-home.html.

5. REFERENCES

[1] B. W. Zuerndorfer, et al, “RASSP Benchmark-1 Tech-
nical Description,” MIT Lincoln Laboratory Project
Report RASSP-1, 13 December 1994.

[2] K. A. Radtke, “The AT&T Hardware Design Envi-
ronment: A Large System’s Hardware Design Pro-
cess,” 81°* ACM/IEEE Design Automation Confer-
ence, 1994.

(3] V. K. Madisetti, et al, “Virtual Prototyping of Embed-
ded DSP Systems,” Proceedings IEEE International
Conference Acoustics, Speech, and Signal Processing,
1995.

[4] B. W. Boehm, “A Spiral Model of Software Develop-
ment and Enhancement,” ACM Software Engineering
Notes, August 1986.

[5] R. B. Grady Practical Software Metrics for Project
Management and Process Improvement, Prentice Hall,
NJ, 1992.

2710

