ARCHITECTURES FOR RAPID PROTOTYPING OF EMBEDDED SIGNAL PROCESSORS

G. Caracciolo and J. Pridmore

Martin Marietta Laboratories ® Moorestown
Moorestown Corporate Center
Moorestown, New Jersey 08057

ABSTRACT

The Rapid Prototyping of Application-Specific Sig-
nal Processors (RASSP) program is striving to change
the way embedded signal processor design is per-
formed, providing >4X improvements in time-to-
market, cost, and design quality. These improvements
will be achieved using a methodology that stresses
hardware and software reuse in conjunction with
Model Year Architectures that facilitate reusabilityand
upgradability through open interface standards. This
paper will describe a Model Year Architecture ap-
proach for the development of cost-effective signal
processors that can be applied to a wide range of
military and commercial applications.

1. INTRODUCTION

The drivers for RASSP signal processor architecture
definition result from the requirements imposed on
signal processors to meet changing mission-critical pro-
cessing needs and military requirements for long-term
life cycle support. Additionally, RASSP must address
the full spectrumn of signal processing applications, from
low-cost commercial applications, such as cellular com-
munications and HDTV (1-10 processors), to very large
military sensor systems, such as shipboard radar sys-
tems (100 - 1000 processors). This range of require-
ments imposes a formidable challenge in defining an
architectural approach that addresses low-cost technol-
ogy insertion, upgradability, and extensibility.

The Model Year Architecture (MYA) is being developed
to address these issues, promoting design upgrades and
reuse via standardized, open interfaces, while leverag-
ing state-of-the-art commercial technology develop-
ments. Designs are performed using a concurrent en-
gineering process that facilitates continuous product
improvements via iterative virtual prototypes, which can
be easily retargeted to support a range of applica-
tions[1]. Model Year architectures must support
scalability, heterogeneity, open interfaces, modular soft-
ware, life cycle support, testability, and system retrofit.

RASSP Model Year architectures must be supported
by library models to facilitate trade-offs and optimi-

2703

zations for specific applications. The hardware and
software elements within the library are “encapsu-
lated” by functional wrappers, which add a level of
abstraction to hide implementation details and fa-
cilitate efficient technology insertion. Thus, the no-
tion of Model Year upgrades is embodied in reuse
libraries and the methodology for their utilization.

2. MODEL YEAR ARCHITECTURE FRAME-
WORK

The RASSP program supports the design of archi-
tectures through a framework that provides a struc-
tured approach to ensure that designs incorporate
all the required Model Year features described
above[2]. The basic elements that comprise the MYA
are the Functional Architecture, Encapsulated Li-
brary Components, and Design Guidelines and Con-
straints, as shown in Figure 1. Synergism between
the MYA framework and the RASSP methodology is
required, as all areas of the methodology, including
architecture development, hardware/software
codesign, reuse library management, hardware syn-
thesis, target software generation, and design for test
are impacted by the MYA framework.

The Functional Architecture defines the necessary com-
ponents and the manner in which their interfaces
must be defined to ensure that the design is
upgradable and facilitates technology insertion. As -
such, the Functional Architecture is a starting point
for developing solutions for an application-specific
set of problems, not a detailed instantiation of an
architecture. Specifically, the Functional Architecture
specifies a high-level starting point for performing
application-specific architecture selection; a standard
approach for selecting and implementing standard,
open interfaces; and guidelines for efficient verifica-
tion and test. The Functional Architecture DOES
NOT specify the topology or configuration of the sig-
nal processor architecture, specific processor types,
or system-level interface standards (external to the
signal processor).

The Functional Architecture conceptis based on the
use of abstract architectural objects and standard

0-7803-2431-5/95 $4.00 © 1995 IEEE



Model Year Architecture Framework

Functional Architecture

i I Constraints,
e I/ F Standards
-t Y MYA Framework

integrated
into RASSP
Methodology

I | l Modular Software /

-{ Architecture /

Encapsulated

Design Guidelines,

)

>\

System Application

(API) to the underlying real-
time operating system ser-

:::i‘sd'l?r T vices. This allows a new hard-
-UW Acou. -.. ware platform with a new

microkernel to change for

L

Y each model year while main-
taining the API. Support for
the APl is through the RASSP
Run-Time System (RRTS),
which provides the services re-

quired for the control and ex-

)/

.

ecution of multiple graphs on

Lb

RASSP Ele::an:'m 32{’;1“"“ y a mult-processor system. The
Re-Use . P ) 5ys
Libraries g @ RRTS and its support for the
® ® a‘e\tshi?!ology $ T API forms the essential com-
® ® ponent of software encapsula-
®® v tion for a processor object.
® ® Specific Instantiation of _

e® Model Year Archtecture The application layer is di-

vided into two parts, similar to

Figure 1. Model Year Arhcitecture Framework

functional interfaces at key points within a layered
architecture. An important aspect of the Functional
Architecture is that application-specific realizations
of a signal processor are embodied in the proper
definition and use of Encapsulated Library Elements. En-
capsulation refers to additional structure added to
otherwise “raw” library elements to support the Func-
tional Architecture and ensure library element
interoperability and technology independence to the
maximum extent possible. Incorporated within the
reuse libraries are application notes that the designer
can use to properly apply and aggregate the individual
hardware and software components into a final pro-
cessor product.

The MYA Framework also provides a set of Design
Guidelines and Constraints for general architectural de-
velopment, such as how to properly use the functional
architecture framework, general use of encapsulated
libraries, and most importantly, procedures and tem-
plates to encapsulate new library components. These
design guidelines and constraints are incorporated
into the RASSP design methodology.

The Model Year Software Architecture, shown in Figure
2, simplifies developing high-performance, real-time
DSP applications — allowing the developers to easily
describe, implement, and control signal processing
applications for multiprocessor implementations. The
architecture supports the Model Year concept by pro-
viding a common Application Programming Interface

2704

the Processing Graph Method
(PGM) developed by the Naval Research Lab [3]. The
first part of an application is the Command Program,
which provides response to external control inputs,
starting and stopping data flow graphs, managing I/
O devices, monitoring flow graph execution and per-
formance, starting other command programs, and
setting flow graph parameters. The Control Interface
provides services that implement these operations.

The second part of the application layer is the data
flow graphs (DFGs), implemented using a data flow
language. Services provided by the DFG interface are
largely invisible to the developer and include man-
aging graph queues, interprocessor communication,
and scheduling. The RASSP program will support
static and dynamic scheduling paradigms. The con-
structed flow graph will be converted into a HOL such
as C or Ada via autocode generation and will contain
calls to a standard set of domain primitives. A full

L c d Prog Data Flow Graph(s)
Target Processor
Applioation
Propgpnmmcr'- Controt Interface Data Fiow Map
interface Target Processor
Primitive Libraries
______ Run-Time ] l Aun-Time
Aun-Time Wﬂ‘“’: ?m;ln
System Real-Time un-Time un-Timel Resl-Time
POSIX System System POSX
Support Support
------ 1
Mioro/ — ""l L-————
Nanokemel Micro / Nanokeme!

Figure 2. Model Year Software Architecture



suite of tools is being developed on RASSP to sup-
port this software architecture. All RASSP tools will
be made commercially available.

3. APPLYING THE MODEL YEAR ARCHITEC-
TURE FRAMEWORK

3.1 Hardware Architecture

Verification of a MYA signal processor is iteratively

performed throughout the codesign process, requir-

ing the reuse libraries to support models at various
levels of hierarchy. Three levels of VHDL modeling
hierarchy are currently being developed and used in

a series of benchmarking experiments to define re-

use library elements for RASSP:

o Performance/Uninterpreted/Architectural models pro-
vide timing-only behavior for processor nodes,
buses/interconnects, etc. to support high-level ar-
chitectural trade-offs (number and types of pro-
cessors, type and topology of network).

o Abstract Behavioral Models provide full functional be-
havior at the data output level with (potentially)
an abstract level of timing. This level includes both
algorithm-level and Instruction Set Architecture
(ISA)-level models.

o Full-Functional and BusFunctional models provide full
functionality at the signal level and timing fidelity
at the clock level. This includes Register Transfer
Level and logic models.

Through these models, the Functional Architecture
constructs are supported. For example, Figure 3 il-
_ lustrates an application of a functional interface at
the hardware level for a construct called a

Local Network
(e.g., VME)
A
interface Local
Logic Interface
..... [ S
i ALl N

Eirg;?:fys umff, Buffer Processor Functional
Elements Memory Erog Control | | Interfaces
ic
..... | SO IR I
\
External
Inte.rfaoe l«t—  Interface
Logic
A
| RECONFIGURABLE
External Network e ERCARE
(e.g., HIPPI)

Figure 3. Functional Interface example applied to
a Reconfigurable Network Interface

Reconfigurable Network Interface (RNI). The RNI
is divided into three logical elements: 1) local inter-
face, 2) external interface, and 3) bridge element.
The local and external interfaces implement the spe-
cific protocols to the elements being interconnected,
in this example a Hlgh speed Parallel Port Interface
(HIPPI) and VME interface. The bridge element,
which typically consists of a buffer memory, and a
controller implemented via custom logic (e.g. FPGA,
ASIC) or a programmable processor, performs the
actual bridging function. The buffer memory facili-
tates asynchronous coupling and flow control be-
tween the two networks, while the controller coordi-
nates data transfers. The three logical elements of
the RNI are implemented as encapsulated library el-
ements that serve to isolate changes resulting from
upgrades. For example, the VME interface could be
replaced by another encapsulated interface, such as
the Scalable CoherentInterconnect (SCI), with little
or no impact on the HIPPI hardware and software.

To refine details of various architectural constructs
and to determine their performance impact, a num-
ber of experiments are ongoing, primarily through
VHDL modeling and simulations. For example, i860
ISA-level models [4] and the FPASP5 vector proces-
sor model developed by Rome Laboratory [5] are
being used in conjunction with models for Periph-
eral Component Interconnect (PCI) and HIPPI in-
terfaces. These models are being used as vehicles for
refining the functional architecture concept by en-
capsulating the models and demonstrating a plug-
and-play capability among the i860, FPASP5, and the
different interface elements. Note that the functional
interface at the software level must also be main-
tained, which will also be verified by executing inter-
face software on the simulation models.

3.2 Software Architecture

Software development cannot be discussed without
its relationship to the architecture of the signal pro-
cessor; in fact, it is an important part of the applica-
tion-specific architecture design process. The repre-
sentation of architectural elements as objectsincludes
not only hardware representations in the form of
VHDL models, but also behavior defined by the soft-
ware libraries associated with that hardware. The soft-
ware portion of architectural objects is handled by
the process shown in Figure 4. This process depicts
the progression of software generation from the re-
quirements to load image, with emphasis on the graph
objects involved and the general RASSP process in
which they occur. It also shows the parallel develop-
ment and co-simulation of the command program.



Executable Arch Partitioned Partition Equivalent
earnts [ Functional [-#] Indep - A00ated gl "5y " L "Code [ Application (- 102
Y Spec DFG P Graph Generation Graph I

Command DFG/Command Target Code

Program [~ Co'r:nggnd —1 Functional ™1 Generation

Spec Simualtion
Systems Architecture Detailed Design
- -t -t —-

Figure 4. RASSP graph-based software development scenario.

Architecture definition involves the creation and re-
finement of the data flow graphs that drive both the
architecture design and the software generation for
the signal processor. The data flow graph(s) of the
signal processing are developed and the nodes are
allocated to either hardware or software. Automated
generation of the software partitions is performed to
provide executable threads that are to be run on the
DSPs. These autocoded partitions are combined into
an application graph which is functionally equivalent
to the original. The graphs are co-simulated with the
command program to ensure proper interaction.

The final step in the software development, which is
the production of the load image, occurs during de-
tailed design. The software load image generation is
an automatic build process that is driven by the
autocode generation results. The inputs to the pro-
cess include the architectural description, the detailed
DFGs describing the processing, the partitioning and
mapping information, the autocode generation re-
sults, and the command program. The processis con-
trolled by a software build management function
which extracts the necessary information from the
library and manages the construction of all the
downloadable code as directed by the partitioning
and mapping data.

This process is verified through virtual prototyping
prior to committing to an actual hardware build and
is carried out at several levels of hierarchy including
performance level simulations, ISA level simulations
of key hardware and software elements, and low-level
simulation of hardware interfaces.

4, CONCLUSIONS
The RASSP program is applying a Model Year Archi-
tecture concept to the rapid prototyping of embed-
ded signal processors. This concept facilitates reus-
ability and regular, low-cost technology upgrades. This

2706

is accomplished through the definition of a frame-
work for developing open architecture signal proces-
sors, which can be applied to a wide range of military
and commercial applications. The framework relies
heavily on Object-Oriented concepts to properly en-
capsulate the architectural reuse library components
that are modular and scalable. Ongoing work is re-
fining the concepts of the Model Year Architecture
framework, including the definition of architectural
object classes, interfaces, and attributes for the vari-
ous elements. Additionally, benchmarks are being
developed to quantify hardware and software over-
head through virtual prototype examples to refine
the encapsulation concept. The MYA will supportan
automated reuse-based code generation process for
heterogeneous multiprocessors.

ACKNOWLEDGEMENT
The work reported here was supported by the ARPA/
Tri-Service RASSP program, contract DAAL01-93-C-
3880.

REFERENCES
[1} Mark Richards, “The Rapid Prototyping of Ap-
plication Specific Signal Processors (RASSP) Pro-
gram: Overview and Accomplishments”, Pro-
ceedings of the First Annual RASSP Conference,
August 1994.
Gerald Caracciolo, “‘RASSP Model Year Architec-
ture Working Document Version 1.0”, October
28, 1994.
Naval Research Laboratory, “Processing Graph
Method Specification”, Version 1.0 11 Dec. 1987.
V.J. Madisetti, T. Egolf, S. Famorzadeh, L-R
Dung, “Virtual Prototyping of Embedded DSP
Systems”, to appear in Proceedings of IEEE
ICASSP’95.
Richard Linderman, Ralph Kohler, “Designing
a Wafer-Scale Vector Processor Using VHDL”,
GOMAC 1991 Digest of Papers. 1991 pp 65-68.

(2]

[3]
(4]

(5]



