VHDL MODELING FOR SIGNAL PROCESSOR DEVELOPMENT

Cory Myers and Ray Dreiling
Lockheed Sanders, Inc.
P.O. Box 868
Nashua, NH 03061

ABSTRACT

This paper presents modeling approaches and experiences
in the use of the VHSIC Hardware Description Language
(VHDL) for the development of application—specific sig-
nal processors. Within our work on the ARPA/Tri-Service
RASSP program we have developed and used VHDL
modeling techniques for modeling the performance of sig-
nal processor systems and for the detailed design of signal
processor systems. These approaches have been applied to
modeling a large Infra-Red Search and Track system from
a functional model, through performance modeling,
through a full functional model, down to a detailed hard-
ware implementation model.

1. INTRODUCTION

The ability of designers to rapidly develop and field appli-
cation-specific signal processing is dependent on their
ability to accurately model the systems that they wish to
build. This modeling starts with modeling of the applica-
tion to be developed and it continues through architectural
anaiyses and into detailed design.

Accurate modeling of the system being developed is key
to good selection of architecture and to rapid development
of hardware. Good models of hardware speed develop-
ment by reducing errors in design and by allowing simul-
taneous hardware/software development.

The Rapid Prototyping of Application Specific Signal
Processors (RASSP) program is an ARPA/Tri-Service ini-
tiative to create a new process for the development of mil-
itary signal processors {1]. The objective of RASSP is to
dramatically improve the process by which complex digi-
tal systems, particularly embedded signal processors, are
specified, designed, documented, manufactured, and sup-
ported. The program is focused on the development of a
process for the conversion of an initial set of requirements
to an optimum signal processor architecture design and
embodiment while simultaneously enhancing the ability
to perform seamless upgrades as requirements change.
RASSP is also addressing the obsolescence problems cre-

The Lockheed RASSP team is under contract to the Naval
Research Laboratory, 4555 Overlook Ave., SW, Washing-
ton, DC 20375-5326. The Sponsoring Agency is:
Advanced Research Projects Agency, Electronic System
Technology Office, 3701 North Fairfax Drive, Arlington,
VA 22203-1714. The Lockheed RASSP team consists of
Lockheed Sanders, Inc., Motorola, Hughes, and ISX.

2699

ated by the inconsistences between the life cycles of
major systems and their supporting technologies.

RASSP's objective is not just to support prototype devel-
opment, but to support full-scale production and life cycle
system support. This means that RASSP must support full
military system design, including Ada, quantity produc-
tion, and support. It must provide a mechanism for captur-
ing the complete behavior of the system in a form that can
be inexpensively maintained and upgraded for twenty
years or more without compromising performance or
safety. RASSP must support large teams working on large
projects, fulfilling their needs while capturing the benefits
of a “skunk works” project development style. Accurate
modeling, at all levels of abstraction, from the functional
to the detailed hardware level, is key to achieving these
goals.

2. OUR MODELING APPROACH

Our RASSP design methodology is denived from the tra-
ditional top down design paradigm with the incorporation
of the Virtual Prototype concept [2]. The basis of this con-
cept is to develop a complete description, in standard lan-
guages like VHDL and Ada, prior to fabrication. The
design is checked out completely as a model prior to con-
mitment to hardware. In this way design errors are caught
when they are easy to fix and the system performance can
be validated in simulation.

The choice of VHDL as the modeling language is impor-
tant because VHDL provides:

Completeness: VHDL provides the mechanism for cap-
turing the system behavior in a form that can be main-
tained and upgraded for twenty years or more; and

Portability: VHDL is an industry standard so models
developed in VHDL can be ported to a wide range of sim-
ulation environments and can be maintained over the sys-
tem’s lifetime.

Our basic modeling approach is illustrated in Figure 1.
The modeling begins with a functional description and
proceeds through a series of refinements to produce
detailed hardware and software. During this refinement
process, as sequence of models are developed to model
system function, system performance, system detailed
behavior, and detailed system design.

2.1. Functional Modeling

The functional definition phase produces a data flow
model that defines the systems behavior as a set of inter-

0-7803-2431-5/95 $4.00 © 1995 IEEE

" Virtual
Prototype

Algorithm | “podel 4
Development o] -
v e
,:‘Is',g‘ G e o

““] pertormance | Tasks
Model
R I
Full Functional| | Software | goqvare
v Madel Development

e * Pt . .
c‘l:iar‘dwaro ‘L"'L : ’ Detailad -1 Softwars
I 1 Modet

FIGURE 1. Our approach to model development
starts with a functional model and refines itinto a
set of hardware and software descriptions.

connected sub-functions prior to hardware/software parti-
tioning. These sub-function models are either used
directly or translated for reuse in lower level definition
phases. We have used VHDL modeling in the functional
definition phase, particularly in the context of the design
of a SAR image processor for purposes of benchmarking
the RASSP Process [3]. The use of VHDL modeling for a
functional specification of a signal processing algorithm is
unusual. It has the following advantages:

Consistent Testing Environment: Our design process is
based on VHDL modeling so the functional definition is
captured in the same form that the hardware development
will be captured in. This allows for later side by side com-
parison between the functional representation and the
detailed hardware design within the same environment.

Path to Synthesis: For those portions of the functional
specification which will be implemented in custom hard-
ware, rather than in a programmable processor, the VHDL
description provides a better starting point for the hard-
ware synthesis problem.

2.2. Performance Modeling

The Performance Modeling phase examines candidate
architectures for trade-offs in both hardware/software par-
titioning and architectural elements. Performance models
incorporate abstract application software descriptions. We
have used a set of VHDL performance modeling libraries
developed for the Air Force [4]. This library defines five
basic types of architectural elements, as follows:

Pipelines: These architectural elements model devices
which implement first—in/first—out behavior. Their behav-
ior is primarily characterized by a delay.

Memories: These architectural element model storage.
Their behavior is characterized by their access time.

Bus Interface Units: These architectural elements model
busses. Their behavior is characterized by a transmission
rate.

1/O Devices: These architectural elements describe
sources and sinks of data. They are characterized by their
data rate.

Processors: These architectural elements describe pro-
grammable processors. They are characterized by their
scheduler and by parameters of a set of resources.

An architecture is defined by connecting the architectural
elements and mapping functional pieces to either dedi-
cated hardware elements, which are modeled as pipelines,
or to programmable processor elements. Functions
mapped to programmable processors are modeled by
specifying an abstract description of their resource and
memory usage requirements. For example, an FFT imple-
mented on a programmable processor may be character-
ized as requiring a certain number of floating point
operations and a certain number of memory references.
Characterization of processing elements and algorithms
can be made data—dependent in a limited manner but the
basic piece of data that flows between modeling elements,
a token, consists of a marker that data has been produced,
not the content of the data.

Architectural performance of a mapping functions to
architectural elements is determined by running the per-
formance model and recording statistics about processor
utilization, bus utilization, processing latency, memory
usage, throughput, etc. Performance modeling is used in

conjunction with static analysis, as illustrated in Figure 2.

2.3. Full Functional Modeling

A Full Functional Model provides a model that is structur-
ally correct and exhibits the functional and performance
characteristics of the entities being modeled. At this level
dedicated hardware elements are modeled by their behav-
ior, not in a way that implies their implementation. For
example, a dedicated filtering chip would be modeled in
way that was correct bit-wise but did not imply the imple-
mentation structure.

At this level of modeling, we have been using Instruction
Set Architecture (ISA) and Instruction Set Simulator (ISS)
models. Our ISA modeling approach is to develop VHDL
behavioral models of processor that can execute software
and provide complete access to the internal registers of
the processor [5]. Our ISS modeling approach is to inte-
grate a commercial processor simulator into a VHDL
environment. In either case, the processor model is com-
bined with a Bus Interface Model (BIM), which models
the detailed interaction of the processor at it connections,
to make the full functional model. We have used this
approach both to model individual chips, i.e., the 1860,
and to model single board computers.

Both the ISA and the 1SS approaches allow the applica-
tion software that is to run on the target hardware to be
run in the simulation environment prior to physical hard-
ware delivery. It is at this stage in the modeling process
that detailed errors about the meaning of interfaces can be

2700

From Functional
Modeling

Specification I
Map Functions into To Preliminary
— HW and SW Softwars Design
Software
Trade | Task
Studies Architectural Descriptions
Alternatives
R N
Capture Capture Model -
Static v Software Performance
Attrib Tasks Model
Library
Spreadsheet l _l
Database
‘ * YHOL Descriptions
Performance
Spme’!sh_eel Model |—-gp / Performance
Analysis Simulation Model .
Architecture 1
.
| Performance Evaluations '
Preliminary _ System
ssg:mn Trade—offs

Modeling
FIGURE 2. Development of architectural
alternatives involves performance modeling of
system.
identified and corrected. Additionally, this type of model
gives the software much more accessibility to the state of
hardware than is often the case when the software is run
on the physical hardware.

2.4. Detailed Implementation Modeling

The Detailed Implementation Modeling provides models
which are sufficient to determine the implementation of
components. For example, at this level the exact structure
of multipliers, adders, and registers would be obvious for
a digital filter. This detailed model is derived from the
abstract behavioral model by a combination of synthesis
tools and manual design.

It is our approach to the modeling problem to only
develop detailed implementation models for those compo-
nents which we are developing. For components that are
purchased, we use the abstract full functional model.
Thus, a complete system simulation is a mixed level
model.

3. RESULTS

Our experiences with the VHDL modeling approach
includes development of a Infra—Red Search and Track
(IRST) processor and a Synthetic Aperture Radar (SAR)
processor [6,3]. Both processors have been developed
from functional specification to hardware designs using

2701

, | i i
e H?H T [o

'

Oaia & Video MHT "I Target " Target Veloci
Q‘VIPI’(V . racher Mini-Track vwD,!._C'{Oﬂm ﬂll."

Video Ou

Deta Out

FIGURE 3. The IRST processing problem requires
target detection and tracking. Theshaded steps are
required processing while the others are required
only in heavy clutter environments.

the modeling approach. We will describe our work on the
IRST processor in more detail here. Our work on the SAR
processing problem will be completed by mid—1995.

3.1. The IRST Processor Problem

The IRST processing problem is illustrated in Figure 3. It
takes input data from an infrared sensor at between 15 to
135 million sample per second depending on the sensor
size. Input data is in fixed point format. The output rate is
small, being just detected target message reports and
graphic symbology. The image size is 2200 by 1800 pix-
els and processing takes place most in overlapping subim-
ages of about 200 by 200 pixels.

The processing required for the IRST problem is a func-
tion of the sensor coverage, the scene revisit interval, the
type of filtering algorithm, and the number of target
movement hypotheses. Requirements can range from hal{
a million to several hundred billion operations per second
(BOPS). For our problem we require 5 BOPS.

3.2. Modeling for the IRST Problem

For the IRST problem we have developed a working sys-
tem that is to be flown aboard a test aircraft. In terms of
our modeling process we performed the following steps:

Functional Modeling: We developed a VHDL model of
the IRST processing.algorithm by translating an existing
C code implementation.

Performance Modeling: We used the performance mod-
eling approach to analyze three candidate architectures for
the IRST processing problem. We examined the Mercury
Raceway architecture, the Intel Paragon MP, and the ISI
Embedded Variant and were able to determine that the
most appropriate architecture for this problem was the
Mercury Raceway (due to communications issues). The
resulting architecture consisted of a Mercury Raceway
with multiple MVC9 boards (16 i860 processors per
board), dual video input cards, a video output card, and a
system controller, as illustrated in Figure 4.

Full Functional Modeling: We developed a full func-
tional model of the MCV9 board using an ISA model of
the i860. We also developed behavioral models of the
video input and output boards. Driver software was run on

Raceway Crossbar

-

Data Distribution

Sensor
Data

Data Distribution

MCV9 Processor

MCV® Processor

MCV9 Processor
Video Output
i

FIGURE 4. The IRST processor consists of video
input, processing, video output, and a controller.

the 1860 models and was used to control the video input
and output models.

Detailed Implementation Modeling: We developed
detailed implementation models for the custom compo-
nents (FGPA programming) on the video input and output
boards.

The total VHDL model consists of over 60,000 lines of
code (LOC), including 4000 LOC for the i860 ISA model,
4000 LOC for Mercury’s custom processor connection
ASIC, 4500 LOC for Mercury’s custom interconnect
ASIC, and 5300 LOC for the VME logic. These models
were developed by a team of eight people, geographically
distributed among Lockheed Sanders, Hughes, and
Motorola, over a period of nine months. The model is
capable of processing 1500 simulated instructions per sec-
ond for the ISA model using the Vantage VHDL simulator
on a Sparc 10/40 workstation.

3.3. Lessons Learned in the IRST Problem

During this modeling process we have observed the fol-
lowing strengths in the modeling process:

Common Language: The use of VHDL performance
modeling allowed the system engineers, the hardware
engineers, and the software engineers all to interact on a
common, executable, model of the processing problem.
This eliminated many communications issues within the
team.

Elimination of Hardware Errors: The development of a
complete system model with the proper structure allowed
the development team to catch and eliminate several hard-
ware interface errors that would normally have been
found after physical integration.

Early Software Debugging: The ability to run driver
software on the behavioral model allowed system soft-
ware debugging to start early. This process caught coding
errors which otherwise would not have been caught until
after physical integration. Additionally, the simulation
environment has the potential to provide more access to
what was happening in the hardware than is often found in
the physical hardware.

Hardware/Software Codevelopment: The modeling
approach allowed simultaneous development of hardware
and software. Additionally, within the simulation environ-
ment the hardware and software engineers were able to
easily negotiate the details of register formats and coding.

We have also observed some weaknesses in the modeling
process, including:

Lack of Existing Models: Development of the perfor-
mance models, the ISA model, and the behavioral models
were time—consuming efforts. We often had to develop
our own full functional models for COTS parts. Fortu-
nately, much of what was developed here can be reused on
other problems.

s

Lack of Software Debugging Tools: Our use of the ISA
model for a processor did not allow the use of standard -
debugging tools. We are working to solve this problem by
using an ISS model in our current SAR work.

Maturity of the Performance Modeling Library: The
chosen library of performance models was not the most
mature. The RASSP program is addressing this issue by
funding commercialization of the performance modeling
technology.

Large Simulation Resources Required: The VHDL
simulations required a Sparc 10 workstation with 256
Mbyte of memory and 50C Mbyte of swap space. Simula-
tion runs typically produced simulation files of 200
Mbytes. We are working to reduce these requirements by
investigating alternative VHDL simulation technologies.

4. SUMMARY

In summary, we have presented a top—down approach to
developing a complete VHDL model of a signal process-
ing system. This approach has been used successfully for
modeling the development of an IRST processor for our
RASSP demonstration project.

REFERENCES

[1] J. Corley, V. Madisetti, and M. Richards, “Introduction
to ARPA's Rapid Prototyping of Application Specific Sig-
nal Processors (RASSP) Program,” in the Proceedings of
ICASSP 1995.

[2] R. Dreiling, “Processes and Experiences in VHDL

Top Down Design,” in the Proceedings of the First Annual
RASSP Conference, August 1994,

(3] B Zuerndorfer and G. A. Shaw, “SAR Processing for
RASSP Application,” in the Proceedings of the First
Annual RASSP Conference, August 1994.

[4] Honeywell SRC, “Graphics Processor Definition
VHDL Processor Model,” AF Contract F33615-90-C~
3800.

[5] S. Famorzadeh, T. Egolf. V. K. Madisetti, P. Kalutk-
iewicz, M. Falco, and R. Dreiling, “Rapid Prototyping of
Digital Systems with COTS/ASIC Components,” in the
Proceedings of the First Annual RASSP Conference,
August 1994.

{6] M. Vahey, “Image Signal Processor Demonstration,”
in the Proceedings of the First Annual RASSP Confer-
ence, August 1994.

2702

