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ABSTRACT

Accurate and wide-area estimates of vehicle velocity and
traffic spatial and temporal densities will be essential com-
ponents of future algorithms for freeway and arterial street
control, for incident prediction and detection, and for op-
timization in route selection. Algorithms like these fig-
ure prominently in the current research and development
of Intelligent Vehicle-Highway Systems (IVHS). This pa-
" per presents an approach to a class of vehicle monitoring
problems which is based upon a video backbone sensor and
multiple target tracking (MTT). The method allows the
integration of measurements made from other sensors like
inductive loops, microwave radars, and laser range profilers.

1. INTRODUCTION

The Intelligent Vehicle-Highway System (IVHS) is envi-
sioned to be an integrated group of technologies and ser-
vices providing fundamental improvement in the efficiency
and safety of the nation’s surface transportation infrastruc-
ture. Central to the achievement of these goals is a traf-
fic management system which will be required to process
distributed traffic observations for the purposes of state
estimation and prediction. The results of estimation and
prediction algorithms are used for traveler information sys-
tems, traffic control (via ramp metering [1] and signal co-
ordination), and incident response.

In this paper we describe our application of video image
processing and multiple target tracking (MTT) to the prob-
lem of traffic monitoring. The basic idea is to use low frame-
rate video to detect cars and then drive an MTT with the
detections in order to estimate vehicle tracks. Video-based
tracking for non-IVHS purposes is discussed in Refs. [2, 3,
4]. From the tracks it is straightforward to compute ba-
sic traffic parameters such as flow, speed, and concentra-
tion. If accurate tracks can be maintained over distance,
then they can provide additional information; for example,
origin—destination pairs of interest to traffic planners and
transit time estimates which cannot be accurately derived
from snapshots of position and velocity. In addition, tracks
can provide information about lane change activity per unit
time or distance which could be very useful in incident de-
tection and prediction.

In the remainder of this paper we describe vehicle detec-
tion based on video {Section 2), modeling of vehicle dynam-
ics and road geometry for MTT (Section 3), the MTT algo-
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rithm (Section 4), and experimental results on real highway
video data {(Section 5). Due to space limitations we provide
greater detail for the detector than for the MTT.

2. VEHICLE DETECTION

One of the central goals of this work is efficient compu-
tational realization of the entire algorithm, including de-
tection and tracking. Therefore, we restrict the detection
problem to the individual lanes themselves (call these the
lane images), we use only single frames for detection, and
where feasible we avoid pixel or region based image process-
ing. The primary goal of the detection work is the develop-
ment of detection thresholds computed from estimated lane
image statistics which will automatically adapt to changing
ambient illumination. A secondary goal is good approxi-
mate expressions for vehicle detection probability and false
alarm rate which may be used in the development of sub-
sequent tracking algorithms.

Examination of histograms of pixel intensities in typi-
cal lane images suggests that a three component Gaussian
mixture may be a reasonable statistical model for a lane
including background and vehicles. We have obtained a
good fit to such a model using a common variance for the
three terms, a low mean to represent shadows under and
alongside vehicles, a high mean to represent bright regions
associated with vehicles, and an intermediate mean repre-
senting the road surface. The mixing proportions depend
upon the number, size, and position of vehicles in the lane.
In addition, the image sequences examined in this project
have exhibited a considerable longitudinal and lateral vari-
ation in the apparent mean of background pixel intensity.
These variations, due to the changing viewing angle in the
longitudinal direction and to surface irregularities in the
lateral direction, are modeled by assuming that the pixels
associated with the road surface in the lane are indepen-
dent Gaussian random variables with a common variance
and spatially dependent mean. To remove the effect of the
spatially varying mean we form a pixel by pixel estimate
of the lane background. The estimate is allowed to slowly
forget the past in order to track temporal variations in am-
bient illumination and detections are fed back to remove
vehicles from the estimate.

2.1. The Per Pixel Detection Model

The background-subtracted lane image at pixel location i
and frame t is denoted ¢;;(t) and is modeled as a three com-
ponent Gaussian mixture. The central peak in the mixture
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is centered at zero and represents the background and the
two other peaks (typically much smaller than the central
one) are due to vehicles. The component of positive mean
corresponds to bright points in a vehicle and the component
of negative mean corresponds to shadows.

These considerations lead to the following simple classi-
fication of individual pixels in the (background subtracted)
lane image:

Ho: X ~N(0,0%) {background)
Hy: X ~N(us0?) [bright]
Hi: X ~N(pa,o?) [dark]

where X denotes a generic pixel {i.e., one of the ¢:;(t)).
If the relative proportions of bright and dark pixels were
known it would be possible to formulate a two class test for
Hy versus a combination pixel distribution representing a
vehicle. The difficulty in this approach is that these pro-
portions are unknown and will typically vary from frame to
frame as vehicles leave and enter the field of view or change
in apparent size.

Instead, the approach taken here is to separately test Ho
versus Hp and Hy versus Hq via Neyman—Pearson detectors
and to combine the results so as to avoid using knowledge of
the mixing proportions. Separately, these problems amount
to Gaussian location testing for which the Neyman-Pearson
detector is easy to find. This leads to a pixel by pixel
clagsification via a two sided thresholding of the value of
each pixel in the image ¢:;(t). If the value fell between the
two thresholds the pixel would be declared background and
otherwise vehicle. Such a method would obviously require
some spatial filtering because the performance of the pixel
by pixel classification would not typically be acceptable. An
alternate approach would be to incorporate prior knowledge
of the shape of vehicles into the model. However, even re-
taining the assumption of independent pixels, such would
entail a composite testing problem with three degrees of
freedom (location and size of vehicle) and the computation
requirements of the resulting search would be prohibitive.
In the next section, we make a further refinement of the
vehicle model which concentrates only on lines of the lane
image to simplify considerably the computational effort in-
volved.

2.2. The Per Line Detection Model

To simplify the complexity of the proposed vehicle detector
we have modified the model slightly to concentrate on indi-
vidual lines in the lane image. Lines will be placed into one
of three classes: Ho (line intersects background), g, (line
intersects bright part of vehicle), or Ha (line intersects dark
part of vehicle). Classification will be done by first testing
Hy versus H,. If the bright hypothesis is selected the line
is declared to have intersected a vehicle. Otherwise, we test
Ho versus Hgy. If the dark hypothesis is selected the line
is. then declared to have intersected a vehicle. If both the
bright and the dark hypotheses fail, the line is declared to
be a part of the background. For the description to follow
we will concentrate solely on the Ho versus Hp test. Under
all of the above hypotheses, the pixels in the selected line
are modeled as independent. Fix a frame number ¢t and a
particular line ¢ and suppose that the lane is W pixels wide
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Figure 1: The Detector: Intermediate and Final Results.

at line i. The random variables observed in this line of the
image are {9:;{t) : 1 < 7 < W} but they will be denoted
{X; : 1 < j < W} for simplicity. Then the density for
hypothesis Ho is

1 w 1 w
(o) = b — 2
Po(z) ( 27”) eXp§ ~53 sz

k=1

Hypothesis H, is composite in that both the vehicle width
V and position k are unknown. Thus it consists of the
family of densities
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w
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where wy (j) =1if k < j < k+V —1 and = 0 otherwise,
k ranges from 1 to W — V, and V ranges over allowable
vehicle widths.

A generalized likelihood ratio test for this problem uses
a test statistic of the form:

w
max ¢ 23 w{ ()X, - ubV} . o)
1=1

This test is unacceptable for two reasons. First, it requires
that up be known in order to set the threshold. However,
the means of the two vehicle distributions (bright and dark)
may be difficult to estimate given the relative paucity of ve-
hicle pixels in comparison to background pixels. Second, the
distribution of the statistic in Equation (1) will be difficult
to calculate or approximate directly.
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Hence, we further approximate by using a fixed and
typical value for V' which we assume is an integer fraction
of the lane width. i.e.. we take W/V = V. Further, we
restrict the possible vehicle locations in the lane line to be
of the form k = (n - 1)V +1 where 1 < n < V. If we define

nV

o= Y. X

1=(n=1)V+1

then we may use the follow approximate statistic in place
of (1)

Zb = max Yn- (2)

1<n<N

This removes the dependence upon the bright mean up and
allows the computation of the distribution of the test statis-
tic since the variables Y, are independent under either hy-
pothesis.

Under Hy the Y, are iid and distributed individually as
N(0,Va?). It is easy to show then that the distribution® of
Zs under Ho is ®"(25/VV o). Hence, for a specified false
alarm rate @ the Neyman-Pearson test for Ay versus H,
is

> decide Hp.
Z = VVe® (1 - &)™) (3)
< decide Ho.

The approximation made in replacing statistic {1} with (2)
amounts to replacing the original composite hypothesis Hp
with a family of distributions for the Y, (one for each 1 <
m < N), specifically, Ym ~ N(V s, Va?), Yo ~ N(0,Vo?)
for n # m. Since Z, is the maximum of the Y, we easily
see that its distribution will not depend upon the particular
incarnation of the approximate A, hypothesis above. Ar-
guing along these lines it is easy to derive the approximate
performance of the detector (3)

Ty — Vllb N-=1 b
Pb{Zb > Tb} =1-® <—\/-W'> (7] (m>

where 7, is given in (3). Since the minimum of the ¥I’s
is the maximum of the —Yi’s, the test of Hy versus Ay is
similar.

The combined line hypothesis test can be summarized
as follows. If the minimum Z4 is less than rq or the max-
imum Z, is greater than r, declare that the line inctudes
vehicle pixels. Otherwise, declare the line to be part of
the background. The final step of the detection process is
to combine the line-by-line results into vehicle detections.
Recall that the result of a line test is 0 {background) or 1
(vehicle, either bright or dark). As shown in Figure 1, the
line-by-line results have both false positive and missed de-
tection errors. However, after processing by a 1-dimensional
21-point median filter, the errors are removed.

1The cumulative distribution function of Gaussian random
variable X with mean zero and variance one is denoted ®(z).

3. DYNAMIC MODEL AND OBSERVATION
GEOMETRY

3.1. Vehicle Dynamics

In most multiple target tracking problems where computa-
tional complexity is an issue, target dvnamics are handled
with relatively simple (two or three state) models. The mo-
tivation for this is twofold. First, often the measurement to
track association problem is quite difficult and requires con-
siderable computational resource. Second, simple dynamic
models frequently suffice particularly when good coordinate
systems have been chosen and/or it is inadvisable to over-
model imprecisely known dynamics.

Our approach is to model the dynamics of individual ve-
hicles separately, i.e., there is assumed to be no coupling be-
tween vehicles. Furthermore, each vehicle is assumed to re-
main in its lane requiring that lane changes be handled by a
supervisory track—observation association function. Within
a lane we assume that the vehicle follows a known path and
that its dynamics along the path are given by the standard
constant velocity model which, when sampled, yields the
discrete time model

txe1 | _ |1 T Tk
L ]=[e T]{E ]

where T is the observation sampling interval and the process
noise wg is assumed to be zero mean, white, with covariance
matrix

_ _ | T®%/3 T?)2
Q—E{wkwi}-[Tz/g 7

] q, ¢>0.

More detailed dynamic models based on human factors are
available [5] which include interactions between vehicles in
one lane and the work described here could, at the cost of
additional computational complexity, be extended to use
such models.

3.2. Road-Camera Geometry

The fundamental input to the MTT is the detection of a
vehicle and its location. The image coordinates ! € R?
of a location £ € R® within the field of view of the cam-
era are £/ = h(Z) where A contains a linear rotation and
translation and a nonlinear projection. Given that the ve-
hicle is constrained to lie on the road, A can be inverted
to compute road location £ from image location ', In the
MTT we use road coordinates in the tracking filters and
an observation that is A~! applied to the return provided
by the detection algorithm. This results in an observation
equation with a state-dependent observation noise covari-
ance: zx = Hzy + ¢z where H = [1 0], Cov{ex] = Re(zx),
and zx = A~ (£]).

4. MULTIPLE TARGET TRACKING

The fundamental issue in MTT is data association—
which return is due to which target, including the possibility
that some returns do not correspond to any target (clutter)
and that the return from some targets at some times may be
missed. Our approach has 2 steps. First. we select out a set
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Figure 2: Tracking Results: Three Selected Images and Per-Lane Space-Time Trajectories for the (a) Right, (b) Center, and

(c) Left Lanes.

of candidate returns based on a gate determined from the
standard deviation of the predicted location provided by the
dynamic system model. Second, since most of the clutter
in this problem is due to end-of-vehicle effects, we use a
nearest neighbor filter which selects the return closest to
the predicted location. This is equivalent to a Generalized
Likelihood Ratio test in which the parameter is the identity
of the return. _

We deal with lane changes in a post-processing stage.
After performing per-lane data association for each lane,
those returns which have not been associated with any track
are determined. For this set of returns, a second round of
gating and association are performed where the predicted
locations are generated by tracks which, at the previous
time-step, were in adjacent lanes. If the association is suc-
cessful, then the vehicle is declared to have changed lanes.

In addition to performing track continuation, an MTT
must also perform track initialization, confirmation, and
deletion. We use simple algorithms: A track is initialized
whenever an return cannot be associated with any existing
track. A track is confirmed if an observation is associated
with it at the sample time following its initialization. A
track is deleted if for 2 consecutive sample times there has
been no return associated with the track.

5. RESULTS

Figure 2 shows 3 frames from a video sequence. Rectangular
(diamond) boxs mark the detected (filtered) position. The
height of the diamond corresponds to the standard devia-
tion of the position estimate from the Kalman filter. Below

the 3 images are 3 space-time plots, one plot for each lane.
Tracks and detections are represented by solid lines and
circles respectively. Error bars correspond to the standard
deviation of the tracks’ positions. Notice the one vehicle
which changes lanes so that it’s track terminates in the
center-lane space-time plot and continues in the left-lane
plot.
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