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ABSTRACT

It is well known that the actual poles implemented in
digital filters are increasingly sensitive to decreasing
pole separation and that practical filters are
implemented usually as a cascade of second order
sections or the dual form to avoid this sensitivity. This
paper considers the case of filters implemented in direct
form and having localised poles.  Expressions that
describe pole position sensitivity for simple isolated
poles and for multiple poles have previously been
developed. This paper addresses the final problem of
pole sensitivity due to pole interaction when one or
more poles are placed in "close proximity" to other
poles.

1. INTRODUCTION

The pole position sensitivity problem arising in the
implementation of digital filters has been discussed at
length and as a practical rule of thumb, high order filters
are usually implemented as a cascade of second order
sections. Cascaded low-order sections are used since
extreme sensitivity arises when the poles are located
close together [1,3]. Almost without exception, the
common textbooks describing pole-zero sensitivity start
their analysis with a calculus expression that assumes
that the resulting expression will be differentiable [5,6].
In that case, the analysis for the simple pole sensitivity
to parameter perturbation depends on a first order
analysis that can be developed using a Taylor series
expansion. Allen [1] has shown that it is improper to
use this expression for the multiple pole case since the
Taylor series first order term becomes zero and that
same term becomes a divisor in the sensitivity
expression. This paper explains the relationship
between the simple and multiple pole cases.
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The consideration of pole locations subject to coefficient
perturbation is described by Marden [4]. The key
results are that the locations of polynomial roots are
continuous when the perturbation is applied. This is in
contrast to the infinitesimal sensitivity theory Equation 1
which suggests that when the poles are multiple, the
pole sensitivity is infinite in the sense that the pole
position perturbation is also infinite. Kaiser [3] showed,
for filters with simple transfer function poles only, that
the perturbation of the pole p, due to denominator
polynomial coefficient a, is given by the expression:
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For transfer functions having multiple poles, Allen [1]
has shown that the perturbation, Az, of a pole having a
multiplicity of M is given by the expression:
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This result suggests that for multiple poles of order M,
the pole position can be displaced as much as the 1/Mth
power of the coefficient perturbation, Aa,.  Perhaps
more importantly, since the pole perturbation is
proportional to the Mth root of the right hand side of
Equation 2, the pole locations will depend on the sign of
the coefficient perturbation Aa, as well as the separation
of the remaining poles.

0-7803-2431-5/95 $4.00 © 1995 IEEE



The pole sensitivity for systems with simple and
multiple poles has been described above, however a
problem exists when poles are placed with decreasing
separation. Equation 1 states the pole perturbation will
increase to infinity, in the limit when the poles coincide,
whereas Equation 2 provides a limit to pole perturbation
for multiple poles. This interaction is the focus of the
paper and will be examined in the following section.

2. POLE SENSITIVITY FOR LOCALISED POLES

The relationship between the realised pole separation,
Ap, and pole perturbation, Az, will be examined by
analysing the procedures used in generating Equation 1
and Equation 2.

The procedure of calculating pole sensitivity requires
that a parameter of the realisation be perturbed and the
resulting movement of the pole location be computed
using a truncated Taylor series expansion. Consider a
denominator polynomial D(z) having zeros, the poles of
the system, denoted by p, D'(z) is derived from D(z)
by perturbing coefficients a, and can determined from
the taylor series in Equation 3.
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When Equation 3 is evaluated at a zero of D'(z), p., in
the vicinity of a zero of D(z), p,, such that p.=p,+Az, it
can be combined to form Equation 4. The following
equation forms the basis for the pole perturbation
Equations, 1 and 2.
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The perturbation, Az, of a zero location of D(z), p,
required to make D’(z) zero, is related to the parameter
perturbation, Aa,, as described in Equation 4.
Simplification requires the identification of the dominant
Taylor series term. It can be shown that for simple
poles and multiple poles of order M this can be
simplified to Equation 1 and Equation 2 respectively.

Assuming there are M-1 localised poles separated from
P, by a distance Ap, it can be shown that the dominant
Taylor series term is either the first (for "large" Ap) or
the Mth (for "small" Ap). By evaluating the separate
Taylor series terms, the value of Ap for which the Mth
Taylor series term becomes larger can be approximated
with Equation 5.
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Equation 5 states that M poles cannot be placed inside a
region whose radius defined by Equation 2, assuming
that the M-1 closest poles to p,, form an Mth order pole
at p,- The approximated order of the pole, M,
determines the rate at which the transition occurs, due to
the Mth root in Equation 2. The following section
provides examples that focus on the transition from the
simple pole description of Equation 1 to the multiple
pole case of Equation 2.

3. RESULTS
Figure 1 and Figure 2 show the pole perturbation of a
pole at 0.75 when surrounded by 4 poles separated by a

distance of Ap. Figure 1 shows the location of the
displaced poles as Ap is decreased and the polynomial

0.06[ E

0.041

0.021

-0.021

-0.04

-0.06f

. s L L . L L
0.68 07 0.72 0.74 0.76 0.78 0.8 0.82

Figure 1 : Location of displaced poles due to coefficient
perturbation and pole separation. “x" realised poles, "." & "*"
displaced poles. The solid lines represent the regions
whose radii are defined by Equation 2 and 5.
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coefficients are perturbed individually by 2%,
MATLAB is used in the analysis to locate the resulting
pole displacement. The realised poles are indicated as ’x’
and the perturbed poles are displayed as ’.’, for the case
when the realised pole is outside the region defined by
Equation 5, and ’*’, when inside. Figure 2 shows the
displacement of the pole at 0.75, as the pole separation is
reduced, for each perturbation of the polynomial
coefficient. The vertical lines depicts the pole separation
defined by Equation 5 and shows the location of the
distinct change in pole displacement due to transition of
dominant Taylor series terms. Since the pole
displacement is calculated as the Mth root of a function,
the rate of increase is related to the order of the pole, M.

Figure 3 depicts a more general case where a pole is
located at 0.75 and surrounded by (M-1) poles, where M
is varied from 2 to 10, the pole separation is varied from
0.2 to 0.001 and a,, is perturbed by +2%°. The resulting
pole displacement is normalised by the displacement
described in Equation 2 and graphed against system order
and pole separation. The vertical partition indicates the
boundary defined by Equation 5. This figure shows the
rapid change in pole displacement as M poles occupy a
region whose size is defined by Equation 5 for the range
of pole order.

Figure 4 and Figure 5 show the pole displacement of a
second order pole at 0.75 when a pair of complex
conjugate poles are brought within close proximity.
Again each polynomial coefficient is perturbed by +2%.
Figure 5 shows the initial displacement to be offset by a
value calculated using Equation 2 for a second order pole.
The pole displacement then increases indicating a pole
multiplicity of 4 as the complex conjugate pole approach
closer than the distance estimated by Equation 5 setting
M=4.

The significant Taylor series term changes dramatically -as
pole separation reduces resulting in the pole position
perturbation definition switching from Equation 1 to
Equation 2. This transition occurs when M poles attempt
to occupy a region whose size is defined by Equation 5,
assuming the M poles to be a multiple pole of order M.
Developing from this, it is shown that for a prescribed
coefficient perturbation the system poles cannot approach
closer than a distance approximated by the multiple pole
Equation 2. Once the poles move inside they are forced
into a positions around the circle defined by the multiple
pole equation.
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Figure 2 : Displacement of the pole at 0.75, due to

individual coefficient perturbation, as a function of pole
separation. The dotted lines represent the pole separation
defined by Equation 5.
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Figure 3 : Normalised pole displacement as a function of

pole order and inter-pole distance.
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Figure 4 : Location of displaced poles due to coefficient
perturbation and pole separation. The solid lines represent
the regions whose radii are defined by Equation 2 and 5.
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4. CONCLUSIONS

In this paper we have considered the effect of coefficient
perturbation for system functions having multiple poles.
The effects of realistic sized coefficient perturbations on
pole positions are found to be described by the multiple
pole perturbation equation for isolated multiple poles. For
multiple poles near to simple poles, the muitiple
perturbation equation should be used when the simple
poles are inside the perturbation circle computed from the
multiple pole perturbation equation. In effect, the simple
pole close to the multiple pole becomes contained in the
multiple once the coefficient perturbation exceeds a
simply computed value. We thus can account
satisfactorily for the perturbation of a mixture of simple
poles and multiple poles subject to coefficient perturbation
and avoid the infinite sensitivity prediction that arises
from the infinitesimal sensitivity analysis.
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Figure 5 : Displacement of the pole at 0.75, due 1o

individual coefficient perturbation, as a function of pole

separation. The dotted lines represent the pole separation

defined by Equation 5.
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