RAPID PROTOTYPING FOR SIMULATION DEBUGGING ENVIRONMENT:
AN ENHANCED DEVELOPING METHOD FOR EMBEDDED COMPUTER SOFTWARE

Zhongmin YU and Yoshinao AOKI

Faculty of Engineering
Hokkaido University
Sapporo 060
Japan

ABSTRACT

Embedded computers(EC) have been used widely in
the world, however, embedded computer software is of-
ten difficult to develop for the lack of suitable debug-
ging environment. With the traditional in-circuit de-
bugging method, it is difficult to analyze the reason of
error; also it is impossible to debug a software before
the implementation of associated hardware; moreover,
it costs both money and time to create the hardware,
so that it can hardly keep up with the ever-changing of
a great nurber of ECs. To tackle the problem, we have
made research on the prototyping method for simula-
tion debugging environment(SDE) of embedded com-
puter software. Our purpose is to establish an environ-
ment to construct SDE and use the software SDE to
substitute the traditional in-circuit debugging environ-
ment. By the method, users can construct a SDE at a
higher speed and lower cost, the development efficiency
for embedded computer software will also be increased
greatly.

1. INTRODUCTION

Unlike the general computer software, an embedded
computer software usually runs in real-time control en-
vironment, to debug it, developers must utilize extra
special system. The in-circuit debugging environment
is the most generally used so far, where add-on hard-
ware must be prepared to support the execution of the
embedded computer software. This kind of environ-
ment has some shortcomings: first, because it includes
both the debugged software and the associated hard-
ware, to analyze whether an error is hardware related
or software related becomes difficult; second, users are
unable to debug their software before the completion of
associated hardware; third, one type of in-circuit hard-
ware can be applicable for only one type of EC. As a
great numbers of ECs are used and changed frequently
each year, therefore the traditional method can hardly
keep up with the ever-changing of the ECs.

Many simulation systems have been created for em-

2663

bedded application system[1]-[4], but they are mainly
used for hardware circuit design instead of software de-
bugging. These systems normally aim at special pur-
pose and are often too large, complicated and profes-
sional to be established, utilized and maintained.

In this paper, we propose a SDE model at first,
then we introduce the prototyping method for SDE.
Our objective is to establish SDE quickly and use this
software-made SDE to substitute the hardware debug-
ging environment.

2. SOFTWARE SIMULATION DEBUGGING

2.1 SDE model

-| Embedded Computer Software |
= -|.. Control message ']

VICE VEC
Simulation EC
Control Simulation
Virtual Environment

...  HostMachine i

fig.1 Conceptual model for the virtual environment

As shown in fig.1, SDE supports a virtual environ-
ment in the host machine, this virtual environment in-
cludes a virtual EC(VEC) and a virtual ICE(VICE).
In the virtual environment, SDE can provide sufficient
functions to support debugging activities in an ordi-
nary computer where no in-circuit hardware required.
Users can run the program, watch the state change of
the EC or trace the output of an I/O signal. Users may
also use copies of SDE to debug different modules or
programs at the same time. In addition, 0/1 sequence
file can also be used as input signal for execution of a
program. All the above functions will enable users to
test their application software program for correctness
in functionality and timing. Just asin a true hardware
debugging environment, even if there is no in-circuit
hardware supported, users can also debug their soft-
ware. This will shorten debugging period and reduce
faults before run-time application of the software and

0-7803-2431-5/95 $4.00 © 1995 IEEE



finally lead to get a higher qualified computer software.

2.2 Architecture

Generally, we divide SDE into three layers, different
layers communicate with each other through inter-layer
primitives.

The bottom level is the simulation kernel, its role
is to synchronize the simulation activities and execute
them on the VEC. Whenever a primitive is called or an
instruction is executed, the according primitives of the
kernel will work to drive the VEC and change VEC’s
status.

The middle layer is the simulation shell, it connects
the top layer and the bottom layer by supporting func-
tions for simulation debugging control. such as visual-
ization aids, tracing supporting or the transformation
of a high level function into several kernel primitives,
also many debugging commands are provided in this
layer.

The top layer is the GUI part, this layer mainly has
to do with the interface between the SDE and user.
Several windows are provided for visualization of EC’s
status.

3. SDE PROTOTYPING ENVIRONMENT
3.1 Objectives

As aresult of the diversity and complexity of ECs, we
would not obtain a desired SDE as fast as possible if the
traditional manual programming method were used, for
this reason, we have created a prototyping environment
called SPACE(SDE Prototype Automatic Construction
Environment), SPACE aims at the following objectives:

1) Rapid prototyping for debugging environment of
an embedded software instead of an embedded hard-
ware; .

2) Software simulation method will be used to estab-
lish a "soft” debugging environment in a heterogeneous
machire for replacing the in-circuit hardware debug-
ging environment.

3) Simulating EC on the basis of high level functional
behavior but not of the low circuit level.

4) A simple and convenient toolkit instead of a large
and complicated system will be created.

3.2 Construction and prototyping steps

SPACE is an integrated environment, as will be jn-
troduced in section 4,5 and 6, it mainly contains three
parts: 1) The specification part to specify the main
features of an EC’s CPU; 2) The generation part to

translate the specification into C code; 3) The reusable
library to provide function for construction of kernel,
shell and GUI part of SDE. SPACE provides users with
a convenient environment for specifing and prototyp-
ing, it utilizes abstract specification, automatic code
generation and reusability techniques in the develop-
ment process.

As shown in fig.2, to create a SDE for an EC, the
first step is to analyze the EC on which the embedded
computer software will execute, following this step, the
user must use the special editor to write the specifica-
tion for the EC, the specification will be translated into
an executable form of specification in C code; if some
specialities are difficult to specify, the user must pre-
pare some handmade simulation functions which will
be linked with the generated C code later; Following
the above steps, the main parts of the simulation ker-
nel will be established, but it still need refining and
optimizing. An executable prototype of SDE can be ob-
tained by linking the generated code and reusable func-
tion with the refined code; When the users accepted the
prototype demonstrated behaviors, they will do further
works to make the initial SDE system become a usable
one. If the prototype is not so perfect, the user will go
back to the former steps for further reversion.

Gy

ESL specification Special speciﬁcation

C code for SDE Hand-made
kernel and testor

simulation function

reversion

fig.2 Prototyping flow in SPACE
4. DESCRIPTION OF EC
4.1 A small specification language

We have developed a small language called ESL (Em-
bedded Computer Specification Language) for specifi-
cation of EC. ESL mainly supports for specification of
high level functional behavior[5)[6], it does not provide
description for detail hardware circuit. The behavioral
specification method aims at description only the func-
tionalities of an EC. This method views the functional
unit as a black-box and cares for mainly the input and
output activities. The advantage is that, behavioral

2664



specification is generally shorter than lower level cir-
cuit specification, thus the specification is easy to write,
read and change. In addition, the behavioral specifica-
tion makes the simulation specification of EC easier,
less error and allows a considerably shorter design cy-
cle for SDE.

According to the object-oriented design method, in
ESL, we classify an EC into several classes, each class
has many objects corresponding to the entities in the
EC. A class normally includes attribute part and op-
eration part. The value of all attributes at one time
represents the status of EC in run time. We view
the attributes as variables and view their operations as
functions calculating and changing the value of them.
We have made an abstraction for the ordinary types
of ECs. This abstraction includes the definition of at-
tributes and the operation rules for each class, there-
fore, once the operations and attributes of an object
are given, SPACE will get enough information to gen-
erate the simulation functions for the object. Based
on the discussion, we designed the ESL to make it fit
for specifing the type and attributes of each object to
provide SPACE with necessary information for proto-
typing. An example of ESL file "MC05.ESL” will be
given in fig.3.

4.2 The editor

) (R @) CRDAED GBD

fig.3 Example windows of the ESL editor

To help user write an errorless specification, we have
created a special editor for ESL. In the editor, each
class of an EC is provided with one kind of definition
window called "template”. The definition of the at-
tributes for an object is done in the associated tem-
plate. The main role of a template is to check the input
data and direct the user in his work, whenever a wrong
data that is beyond the limitation of the template is
inputted, the template would not confirm it and some
warning or guiding messages will be given. In addition,
the objects defined in one template would be cited in

the definition of other classes of objects. In the end,
the editor will give out a specification file with extended
name of ".ESL”. Fig.3 shows two eidtor's windows in
which the upper window is the main frame for classes
definition, and the back window is used for instruction
classes defirition.

5. GENERATOR

The generator uses ”.ESL” file as input data, it scans
the file two times. In the first time, the data frame-
works for attributes of objects are formed; In the sec-
ond time, C programs for construction and testing of
simulation kernel are generated. YACC[7] is used for
parts of the generation work. As also shown in fig.4,
the following C files are the output of the generator:

- Definition head files for classes

- Data structure definition for attributes of classes

- Simulation function for operation of classes

- Instruction set index table

- Instruction simulation functions

- General simulation functions

- Program for prototype tester

- Makefile

- Warning and error message

fig.4 The generator window

As to the particular operation that is impossible to
specify, SPACE generates a function frame with suf-
ficient comment and guiding information. User will
refine those functions through adding some handmade
code. After combining the handmade programs with
the generated code under the help of the reusable li-
brary, a prototype of SDE will been established.

Program for prototype tester is also an output of
the generator. In our experimental system, the tester
includes mainly test of basic function of simulation ker-
nel such as register transferring, instruction simulation
and so on. SPACE will only select one typical state for
the test work. Undoubtedly, the tester is a helpful tool
for users, because it can give user a group of test-run

2665



results from which the user can easily evaluate the gen-
erated prototype. If some errors are found, the users
can change their ESL specification or C file and then
repeat the previous process.

6. REUSE

Prototyping of SDE in SPACE also emphasizes reuse
at all levels, this means that, some routines developed
previously can be utilized later. Users are able to com-
bine compatible sets of reusable parts with each other
easily at various levels and in different ways. We have
developed a reusable library, the library can be accessed
both in step of translating an ESL specification into
C code and in step of writing a handmade program.
The library includes functions supporting for simula-
tion kernel, shell and GUI part respectively. In the
library, the reuse ratio for GUI part is higher than the
other two parts. Because of the specialities of EC, the
kernel part has the lowest reuse ratio, therefore, part
of the simulation kernel will be generated by genera-
tor. In addition, the library can be enriched by adding
some extra simulation function if a reusable component
can not be found. We find that the reusable library can
considerably reduce the re-writing of tedious programs.

7. IMPLEMENTATION

We have made an experimental SPACE system on
X11 environment of SUN workstation, fig.3,4 and fig.5
give some examples of the system. The present system
main deals with 4,8 and 16 bits’ microcomputers in
which the instruction is limited to have two operands.
As experiments, we have used SPACE to create SDE
prototypes for 4 and 8 bits’ microcomputers as NEC-
upd75zz, Motorola MC68HC05 and NEC-upd78k. Re-
cently, we are working toward the perfecting of SDE
for 16 bits' microcomputer HITACHI H8/532.

\Qll Trow FOSimd) /o L3R &/

Instructioriess, L DA 3

o entte o] » 0"
umu’ﬂ. [}

wrileh {IP-Ddust, wddr_madel{Pe [P-dest_addr_mode}(
cae WM 78 (A_Regiode <-> §(IX-Addr163) QDA arlb.X > ¢
Addresaing Mode ¢ (I IX-AGK16) - (Rageiddri6)) -~o/
Sﬂr*ln-'ll p |

oxff 3 se);
—'l'll.ﬂh"lﬂlﬂf.."ﬂrl.dll' .

/0— hunﬁt “Mi:'hutn. Mode = (lm Registard) ~—-o

ister
n-w. ue 3 OuFf & RoadRegisterBylDiDest Augister ID)
sprionf {Opar arctlString, *Zs® M-.uv..ﬁ-hl (h-lh' ster1D));
so—= Simlate the Operation A.OK -
bl!‘nlmlpl)(wnfll W.lul

isterIDs
(IIPI cade_len:

W05, Croe.c* 5‘“ Ilr-l 167267 bytes

fig.5 An example of generated C code for simulation of
instruction "LDA addr8,X" specified in fig.4

By qualitative estimation, about more than half of

the work can be saved in comparing with the traditional
method. For example, to create SDE for MC68HCO5,
we have used about 28K bytes of data for specifing the
main parts of CPU (registers, signals, bits, memory,
addressing modes, instruction set and so on) at regis-
ter transformation level, then we obtain nearly 400K
bytes of C code from the generator. In addition, by
using of reusable library, the manual works have been
reduced greatly.

8. CONCLUSIONS

SPACE is a prototyping environment for simulation
debugging system of embedded computer software. It
provides users not only with editor to specify the CPU’s
main features of an embedded computer, but also with
generator to translate the specification into C code. By
manual refining and the using of the reusable library,
it is easy to comstruct a SDE whenever a new kind
of embedded computer is needed. Of course there are
also some problems to be resolved, we will make efforts
toward the problems, a number of future enhancement
is planed.

REFERENCES

[1] R.A. Saleh, I. Inoue and S. Ido, "Enhanced Circuit
Simulation: Expectations, Problems, Implementa-
tion and Integration,” Trans. IEICE, Vol. J74-A,
No.8, 1991

[2] J. Ootani, D. Konno and T. Adachi, "A Pro-
posal on Cooperative Development Environment
for Next-Generation Circuit Simulator,” Trans.
IEICE, Vol. J74-A, No.8, 1991

[3] R. Hartley, et al., A Rapid-Prototyping Environ-
ment for Digital-Signal Processors,” IEEE Design
and Test of Computer, June, 1991 -

[4] Lugi, "Computer-Aided Prototyping for A Com-
mand and Control System Using CAPS,” IEEE
Software, Jan., 1992

[5] R. Camposano, "From Behavior to Structure:
High-Level Synthesis,” IEEE Design and Test of
Computers, Oct., 1990

[6] M. Ohmura, H. Yasuura ard K. Tamaru, "Behav-
joral Verification of CPUs Using Functional In-
formation Extraction,” Trans. IEICE, Vol.J76-
A ,No.9, 1993

[7] S.C. Johnson, "Yacc - Yet Another Compiler-
Compiler,” Comp. Sci. Tech. Rep. No.23, Bell Lab-
oratories, July 1975

2666



