EFFICIENT THROUGHPUT OPTIMIZATION OF FEEDBACK LINEAR
COMPUTATIONS USING GENERALIZED HORNER’S SCHEME

Jan M. Rabaey
Department of EECS, University of California, Berkeley, CA

Miodrag Potkonjak
C&C Research Laboratories, NEC USA, Princeton, NJ

Kazutoshi Wakabayashi
C&C Research Laboratories, NEC Corporation, Tokyo, Japan

ABSTRACT: We present a generalized Horner’s
scheme-based approach which enables that a large and
important subclass of nonlinear computations, named
feedback linear computations, is efficiently, maximally,
and arbitrarily sped-up. The new class includes popu-
lar nonlinear polynomial Volterra filters and widely
used LMS and RLS adaptive filters. The effectiveness
and low overhead of the proposed techniques is illus-
trated on several designs.

1. Feedback Linear Computations

Throughput is widely recognized as the single,
most important parameter of state-of-the art designs
[Bla85, Mit93]. Iteration bound, control and data depen-
dencies impose fundamental limits on achievable perfor-
mance. Algorithmic transformations are universally
accepted as the most efficient and effective way in over-
coming these limitations during throughput optimization
[Par89, Pot92, Sri%4].

It has been shown that an arbitrary linear com-
putation can be sped-up to an arbitrary high
throughput using unfolding along time loop, pipe-
lining and a set of algebraic transformations [Pot92].
It has been also shown that there are cleasses nonlin-
ear computations which can not be transformed so
that the throughput is increased [Kun76]. Classifica-
tion of computation into only two classes, linear and
nonlinear, is however a coarse one. We introduce a
new class of computations, feedback linear. The
motivation behind the introduction of the new class
of computations is directly related to our main goal
to develop a transformation-based approach which
will for as broad as possible a class of computation

2659

enable provably maximally fast and arbitrarily fast

implementations.

Informally and intuitively, the class of feed-
back linear computations encompasses all those
computations which do not have multiplications (or
divisions) between variables which belong to feed-
back cycles. More formally, feedback linear computa-
tions can be defined as those who can be described
using the following set of equations.

X(n+1] = A*X[n] + B*(U[n])
Y[n] = C*(X[n]) + D* (U[n])

X[n] is a vector which denotes feedback states
(algorithmic delays), U[n] is a vector of primary
inputs, and Y[n] is a vector representation of primary
outputs. A is a matrix which has as entries functions
which do not depend on feedback states x[n]. There
is no restriction of functions which forms the entries
of matrices B, C and D.

The importance of feedback linear computa-
tions is emphasized by the fact that many of modern
VLSI applications belong to this class. The feedback
linear class of computations includes widely used
Kalman, LMS adaptive, block LMS, direct RLS adap-
tive, Cholesky RLS adaptive, QR-RLS adaptive, and
nonlinear Volterra polynomial filters. The adaptive
filters are regularly used in other high volume appli-
cations, such as data and voice cancelers, for equal-
disk
equalization of digital wideband packet radio net-
works [Mit93].

ization of magnetic channels, and for

0-7803-2431-5/95 $4.00 © 1995 |IEEE

Identification of feedback linear computation
is simple and can be done rapidly in polynomial,
worst case quadratic, time. The first step is the iden-
tification of cycles using the standard depth first
search algorithm for labeling of strongly connected
components. All nontrivial strongly connected com-
ponents with more than one node, belong to cycles.
All other nodes do not belong to cycles. The second
step is a checking that all operations in cycles are
additions, subtractions and multiplications with
either constants or with variables which do not have
transitive fanout from some of feedback delays.
During the second step we assume that all inputs
are constants. Standard constant propagation agera-
tums and software can be used for constant propa-
gation [Rab91].

2. Horner ‘s Scheme based Throughput
Optimization

We now present the procedure which trans-
forms a feedback linear computation in its maxi-
mally fast and arbitrarily fast implementation. The
maximally fast implementation refers to the fastest
possible implementation when alternation of
latency is not allowed, while the arbitrarily fast
implementation refers to the implementation where
the only goal is throughput optimization with no
constraints on the latency.

We will introduce the transformation tech-
nique, for the sake of clarity, on special case of con-
stant feedback linear computation. This subclass of
feedback linear computations has matrix A where
all entries are constants. The technique is based on
the use of maximally fast and arbitrarily fast algo-
rithms for linear computations [Pot92]. The key
technical novelty is use of the new generalized Hor-
ner’s scheme.

Theorem 1: The ratio of the initial and the final
AT product of the designs produced using the modified
algorithm for arbitrarily fast implementation [Pot92] of
constant feedback linear program is constant for an
arbitrary high throughput improvement.

Proof:

The proof is constructive. It is based on the
novel use of Horner’s rule for polynomial evalua-
tion. The rule rearranges the computation of an nth
degree polynomial

= n -1
0 = wx"+u, (X" 4.+ ux+ug, u

to the following form:
u(x) = (n(ux+u,)x+..)x+u

Therefore, an arbitrary polynomial can be
computed using at most n additions and n multipli-
cations. The excellent exposure of Horner’s rule and
the number of its generalization are presented by

X,,, = A"X,+A"-1BU, +A"-2BU, + .. +ABU,_, +BU, Y, = CX, + DU,
Y, = CX, + DU, Y, = CAX,+C(BU)) +DU,
Y, = CAX, + CBU, + DU, Y, = CA’X, + C(A(BU,) + BU,) + DU,
) = n-1
Y, = CA"-1X, + CA"-2BU, + CA"~2BU, + ...+ CBU,_, + DU, Vo = CA X+ CAL)) + DU,
FIGURE 2. Application of generalized

. . Horner’s scheme on the arbitrarily fast
FIGURE 1. Arbitrarily Fast Implementation of Linear | |implementation of an arbitrary linear
Computation: Necessary and Sufficient Set of Computations. computation.

2660

Knuth [Knu81]. Note that in the rest of the paper we
treat B, C, and D as matrix operators.

A simple analysis shows that direct imple-
mentation of the targeted linear computation after
the application of the algorithm presented in [Pot92]
causes the resources to grow at a quadratic pace, as
the function of the number of unfoldings. We apply
the key idea from Horner’s scheme, on the part of
the computation used to compute the influence of
primary inputs shown in Figure 1, so that this over-
head is reduced to linear increase. The resulting
structure is shown in Figure 2 using the functional
dependency form. The part of the pipelined compu-
tation which depends only on the primary inputs is
shown graphically in Figure 3. Note that we can add
to this computational structure as many pipeline
delays as requested. Also note that with any addi-
tional level of unfolding only the constant amount
of computation is added: what is within a constant
factor equal to how much more computation is
needed if the new speed-up algorithm is not
applied. Therefore, the AT product is constant.
QED.

toY,

All theoretical and algorithmic results from
the previous theorem can be easily adapted for the
general feedback linear system. The only difference
is that while initially we treated A as s matrix with
constant entries, now they represent matrix opera-
tor. It is important to note that the new semantic
meaning associated with the A matrix has a limited,
but significant impact on hardware overhead. The
entries of operator A are now symbolic expressions,
and therefore constant propagation cannot be
applied in general case. Therefore, each additional
application of operator A, induces in the worst case
quadratic overhead.

It can be easily shown that the Horner’s
scheme-based algorithm for arbitrarily speed-up of
linear computation results in the following two the-
orems. The proofs are presented in [Pot94].

Theorem 2: Given an arbitrary feedback linear
computation, the fastest implementation of this compu-
tation (obtained using only algebraic transformations,
common subexpression elimination and replication,
constant propagation, and pipelining of primary inputs)
uses at least logN + 1 computational levels and is pro-
vided by the generalized Horner’s -scheme based algo-
rithm.

Theorem 3: The ratio of the initial and the final

AT? product of the designs produced using the algo-
rithm arbitrarily fast implementation of feedback linear
program is constant for an arbitrary throughput
improvement.

An interesting observation is that if the level
of unfolding is small, when the number of delays in
feedback loops is large and the number of inputs
and outputs is relatively small in several initial
unfoldings, the direct maximally fast computation
using functional dependencies shown in Figure 1
may be the more economical alternative. However,
when the number of unfoldings is large, the new
scheme is superior to the initial, regardless of the

FIGURE 3. The part of feedback linear CDFG on number of inputs and states.

which generalized Horner’s scheme is applied. The
structure can be pipelined to an arbitrary level.

2661

3. Experimental Results

The Horner’s scheme-based approach for
optimization of feedback linear DSP computation
was applied on four DSP benchmark examples: two
nonlinear fixed coefficients Volterra filters and two
LMS adaptive filters for achieving maximally fast

implementations. The results are shown in Table 1.

Design ICP |FCP | IFCP | 1A FA | FIA | IFAT
2 Volterra | 12 2 6.00 | 28.86 | 94.01 | 3.26 | 1.84
Volterra 8 2 400 | 2786 | 5521 | 1.98 | 2.02
4LMS 12 4 3.00 | 5575 (13497 | 242 | 1.24
8§ LMS 20 5 4.00 |111.15]| 298.03 | 2.68 | 1.49

Table 1: Fast Implementation of Feedback Linear Programs:
ICP - initial critical path; FCP - critical path after the
application of the algorithm for fast implementation of linear
programs (FLP), IFCP - ratio of critical path before and after
application of FLP, IA - initial area; FA - Final area; FIA - ratio
of the final and the initial and area; IFAT - ratio of the initial
and the final AT product. The description of examples is
provided in Section 3.

Parameter In Al A2 A3
Cp 6 3 1.5 1
Area 26.28 | 56.27 | 103.97 | 317.56
Energy 98.0 207 401 1239
EnergyS 98.0 62.6 54.3 128
CPR 1.00 2.00 4.00 6.00
AreaR 1.00 2.14 3.96 12.1
EnergyR 1.00 2.11 4.09 12.6
EnergySR 1.00 0.64 0.55 1.31

Table 2: Application of Arbitrarily Fast Procedure on
Volterra Filter: CP - effective critical path for one
iteration; Energy - energy at 5 V per samgle; Energy -
energy at scaled voltage per sample, CPR, AreaR,
EnergyR, EnergySR - ratio between initial and final
critical path, area, energ?l at 5 V, and energy at the
scaled voltage per sample respectively. The columns
represent initial design and designs after application of
n (n=1,2,3) times unfolded arbitrarily fast Horner's
scheme-based procedure

For this group of examples, the average and median
improvement in throughput are 4.25 and 4.00 times,

2662

while the average and median increase in area are
2.58 and 2.50 times, respectively. Table 2 shows
experimental results after the application of the
Horner’s -scheme based algorithm for arbitrarily
fast implementation on the Volterra filter for a lim-
ited number of unfoldings. As indicated by Theo-
rem 2, if the unfolding process is continued an

arbitrary high speed-up is achievable.

4. Conclusion

The procedures for transforming feedback
linear computations to their maximally (when a
limit on latency is imposed) or arbitrarily fast form
are presented. Due to use of the generalized Hor-
ner’s scheme, the hardware efficient implementa-
tions are provided.

5. References

{Cha92] A.P. Chandrakasan, at. al.: “Hyper-LP: A Design Sys-
tem for Power Minimization using Architectural Transfor-
mations”, IEEE ICCAD, pp. 300-303, 1992.

[Cro75] R.E. Crochiere, A. V. Oppenheim: “Analysis of Linear
Networks”, Proceeding of the IEEE, Vol. 63, No. 4, pp.
581-595, 1975.

[Bla85] RE. Blahut: “Fast Algorithms for Digital Signal Pro-
cessing”, Addison-Wesley, 1985.

[(Kun76] H.T. Kung: “New Algorithms and Lower Bounds for
the Parallel Evaluation of Certain Rational Expressions and
Recurrences”, Journal of the ACM, Vol. 23, No. 2, pp. 252-
261, 1976.

[Lee87]1 E. A. Lee and D. G. Messerschmitt: “Static Scheduling
of Synchronous Dataflow Programs for Digital Signal Pro-
cessing”, IEEE Trans. on Computers, Vol. 36, No. 1, pp. 24-
35, 1987.

[Mit93] S. K. Mitra, J.F. Kaiser: “Handbook for Digital Signal
Processing”, John Wiley, New York, NY, 1993.

[Par89] K.K. Parhi: “Algorithm transformation technique for
concurrent processors”, Proc. of the IEEE. Vol. 77, No. 12,
pp- 1879-1895, 1989.

[Pot94] M. Potkonjak, J. Rabaey, “Maximally Fast and Arbi-
trarily fast Hardware Efficient Implementation of Linear
and Feedback Linear Computations”, NEC USA Technical
Report, 1994.

[Sri94] M. B. Srivastava, M. Potkonjak: “Transforming Linear
Systems for Joint Latency and Throughput Optimization”,
EDAC-94 European Design Automation Conference, pp.
267-271, 1994

[Rab91] J. Rabaey, et. al.: “Fast Prototyping of Data Path Inten-
sive Architecture”, IEEE Design and Test, Vol. 8, No. 2, pp.
40-51, 1991.

