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ABSTRACT

For the design of complex digital signal processing systems,
block diagram oriented synthesis of real time software for
programmable target processors has become an important
design aid. The synthesis approach discussed in this paper
is based on multirate block diagrams with scalable synchro-
nous dataflow (SSDF) semantics. For this class of dataflow
graphs we present scheduling techniques for optimum data
memory compaction. These techniques can be employed to
map signals of a block diagram onto a minimum data me-
mory space. In order to formalize the data memory com-
paction problem, we first derive appropriate implementa-
tion measures. Based on these implementation measures it
can be shown that optimum data memory compaction con-
sists of optimum scheduling as well as optimum memory
allocation. For the class of single appearance (SA) block
diagrams with SSDF semantics, scheduling can be reduced
to an integer linear programming (ILP) problem. Due to
the computational complexity of ILP, we also present a sub-
optimum scheduling selection criterton, which can be used
for SA and non SA-schedulers.

1. INTRODUCTION
Memory compaction is an important optimization techni-
que for systems with memory resource constraints. Espe-
cially in the implementation of digital signal processing sy-
stems we often find memory constraints due to limited avai-
lable on-chip memory of programmable target architectures.

In this paper we focus on data memory compaction in
the context of the synthesis of real time software using a
block diagram specification of a signal processing system.
As target processors digital signal processors (DSPs) are
of special interest because of architectural features tailored
to the specific needs of signal processing tasks. DSPs have
stringent on-chip program memory limits and off-chip me-
mory access is in general inefficient. In case of commercially
available DSP cores, the on-chip RAM/ROM memory space
may be adapted to the application specific needs. Since the
size of the required memory space determines the costs, it
is important to minimize the required memory space.

The block diagrams used for software synthesis are da-
taflow oriented and consist of blocks and signals. From the
implementational point of view blocks are software modules
(supplied by the user or the system) and signals are FIFO
buffers in the data memory space. In case each block of
a block diagram consumes and produces a fixed number
of data samples, the block diagram is based on the “syn-
chronous data flow” (SDF) [1] paradigm. These numbers,
called ratesin the sequel, must be specified a priori, e.g. at
configuration time. Up- or downsampling within a block
results in multi rate block diagrams. If all blocks of a block
diagram may consume and produce any integer multiple of
the predefined SDF-rates per activation, we call the SDF

raph scalable, resulting in a scalable synchronous dataflow
SSDF) graph [2]. Due to the scalability, SSDF block dia-
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grams can be optimally vectorized [3]. Vectorization in the
context of SSDF graphs is regarded as a transformation
on an SSDF graph raising the number of consumed and
produced samples per activation to a certain integer multi-
ple of the predefined SDF-rates. Because of the instruction
and/or arithmetic pipelining of DSPs, vectorization leads to
enhanced throughput of the synthesized software. Because
of the increased vector lengths, vectorization also increases
data memory consumption, which can be drastically redu-
ced by the proposed data memory compaction.

The heuristic minimization of data memory consumption
by means of looped schedules for SDF block diagrams has
been discussed in [4]. The approach therein minimizes the
vectorization opportunities for each block, thus is applica-
ble for applications where throughput is not the primary
optimization goal.

In section 2 we will introduce some of the basic forma-
lisms of SSDF graphs. It follows the presentation of some
implementation measures which serve as optimization cri-
terions. In section 4 the optimum scheduling problem is
treated. Afterwards we derive a suboptimum scheduling
heuristics and finally demonstrate the scheduling strategies
by means of an application example.

2. SCALABLE SYNCHRONOUS DATAFLOW:
BACKGROUND AND NOTATION

We suppose that a digital signal processing system is spe-
cified by means of a scalable synchronous block diagram
F = (B,S,A FE, D). A block b; € B specifies a signal
processing component of arbitrary granularity. The signals
si € S specify the data flow between the blocks. The to-
pology of the block diagram is represented by the functions
A() and E() defined on the signal set S. A(s;) is the block
producing samples which are written in s; and E(s;) is the
block consuming samples which are stored in s; and have
been produced by A(s;). The number of initial samples on
a signal s; are specified by Do(si). An initial sample repre-
sents a phase shift of one sample. According to the synchro-
nous data flow semantics a block b; = A(s;) produces O(s;)
samples written into signal s; and consumes I(sx) samples
from the signals si, where b; = E(s¢). Additionally in
the SSDF domain a block may consume and produce any
integer multiple n(b;) of the predefined rates, where n%bj)
denotes the local blocking factor associated with block b;.

A schedule ® of an SSDF block diagram F' is an activation
sequence & = {ai,az,...,ap} of blocks, where an activation
ar = (b;j,n(b;)) either denotes the activation of a block with
the local blocking factor n(b;) or the activation of a subsche-
dule &; with a looping factor ki, ax = (&, k). The latter
describes a hierarchical schedule, which may be implemen-
ted with nested loops [2,4]. The looping factor ki denotes
the number of repetitions of the subschedule ®;. In the fol-
lowing we assume that all activations of a schedule @ are
validin the sense that at the time of the activation of a block
b; there are at least as many samples at each input port as
the block requires according to rates I{s;),Vs; : E(s;) = b;.
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The activation ar = (b;,n(d;)) of a block b; is called an
appearance of block b;. If every block bx appears exactly
once in ®, the schedule is called single appearance sche-
dule (SAS). In case of a SAS each block has a unique local
blocking factor n(b;).

In this paper we are interested in infinite schedules, where
each block is activated infinitely often. For the software syn-
thesis, we have to guarantee that an infinite valid schedule
can be implemented with finite memory space for each sig-
nal. A sufficient condition for finite memory is that each
block b; of a scalable synchronous block diagram F is exe-
cuted at least gp(b;) times for one schedule period & [1],
which can be repeated infinitely often. This condition en-
sures that in each schedule period as many samples are
written to as are read from each signal. For multirate block
diagrams for at least one block gr(b;) > 1 holds.

The wvectorization of a given scalable synchronous block
diagram determines the local blocking factor n{b;) for each
block b;. Since there is a unique local blocking factor for
each block in case of SA-schedules, vectorization can also
be regarded as a transformation on F increasing the rates
of the input and output ports of the blocks. The vectoriza-
tion is valid, if after vectorization there still exists a valid
schedule. For all blocks the minimum number of executions
qr(b;) per schedule period can be increased by the global
blocking factor N,, which describes the global vectorization
degree. In the sequel we assume that the block diagram has
an associated SA-schedule and is vectorized, i.e. each block
has a local blocking factor assigned. Also we restrict the
discussion on flat SA-schedules, which means that we do
not consider looped schedules.

3. IMPLEMENTATION MEASURES FOR
DATA MEMORY CONSUMPTION

In order to derive optimum strategies for data memory com-
paction we first have to define the optimization criterion.
Let di(k) denote the number of signal samples in signal s;
in scheduling step k, 1 < k < p. Then

Mnaz(®) = ) max{di(k)} (1)

1<i<N,

describes the total memory needed in case we allocate me-
mory for each signal separately. Each signal s; needs at
least max {d.ék)} memory space. For single appearance
schedules and for signals s; with Do(s;) =0

max {di(k)} = gr(b;)O(si) Ny

holds, since there is one write access followed by one read
access on signal s; per schedule period. Thereby p deno-
tes the length of the period, which is equal to the number
of blocks in case of SA-schedules and N, denotes the total
number of signals. For signals with Do(s;) > 0, the highwa-
ter max, {d:(k)} depends on whether due to the schedule
® the first access to the buffer is read or write:

bj = A(si)  (2)

. _ [ Do(s:i) + qr(5;)O(s:)Ng if first write
m‘?x{d,(k)} - { DOE&'; ’ ! if first read

Note that the condition Do(s:i) > g¢r(4;)O(s:) N, has to
be fulfilled in case the first access is a read, i.e. E(s;) is
activated before block A(s:).

Signals with Dg(s;) = 0 can be mapped onto static buf-
fers of length M (si) = gr(b;)O(s:)N,. A buffer is said to
be static iff the write resp. read access of the incident block
occurs at the same memory offset in each schedule period.
Static buffers can be efficiently synthesized, since blocks ac-
cessing those buffers just need a constant pointer to the me-
mory segment allocated for the buffers. On the other hand,
signals with Do(s;) > 01i.g. can mapped only onto dynamic
circular buffers of length M (s:) = Do(s:) + qr(b;)O(s:)N,

or M(s:) = Do(s;), i.e. read and write accesses occur at dif-
ferent offsets from one period to the next. Dynamic buffers
i.g. require offset computation at runtime thus exhibiting
runtime overhead.

For both cases, Do(s;) > 0 and Do(s;) = 0, the imple-
mentation measure Mmaz(®) describes the expected data
memory consumption for a given schedule ® in case buffers
use mutually exclusive memory spaces. From eq.(3) and
(2) it can be seen that there is an optimization petential in
evaluating a schedule @ such that the total amount of me-
mory needed for the signals s; with Do(s:) > 0 is minimi-
zed by activating the proper reading blocks first. It can be
shown that this optimization problem is a nonlinear sche-
duling problem. Note that the memory consumption can
be optimized only by minimizing the lengths of the buffers
corresponding to these signals and not by sharing memory
between dynamic buffers. Dynamic buffers i.g. can not be
mapped onto shared memory segments since write and read
accesses are scattered to the whole buffer. In the sequel we
will concentrate on optimally sharing memory for signals
with Do(s:) = 0. Signals s; for which Do(s;) = 0 holds will
be denoted as s:. The optimization problem is regarded
as more important, since 1.g. there are much more signals
without initial samples, especially after transformations like
retiming, where explicitly initial samples are concentrated
such that vectorization is optimized [5].

In order to take the effects of shared buffers into account
another implementation measure is of interest. The number
of signal samples present in all signals s; with Do(s:) =0
at schedule step k after activation ax = (b;,n(b;)) can be
described with the number of Live signal samples M(k),
1<k<yp:

Mi(k) =Y dj(k) = Mu(k = 1) + Mout(5;) = Min(b5) (4)

where M;(0) = 0.
Mou:(b;) denotes the total number of output samples pro-

duced on all signals 3! upon activation of block b; = A(s}):

Mou(bs) =n(b;) D O(si) (5)

VA(s!)=b;
and M;n(b;) denotes the total number of input samples con-
sumed from all signals s; upon activation of block b; =

E(s)):
(<0 Min(b;) =n(b;) Y I(s0) (6)

VE(::.):bj

Note that n(b;) = ¢gr(d;), since @ is a flat SA-schedule. In
case of non-inplace computation all input and output sig-
nal buffers have to be mapped onto disjunct memory spaces.
Thus upon activation of block b; we need Mo..(b;) additio-
nal memory space for the storage of output samples. Note
that signals s; with Do(s;) > 0 are assumed to have sepa-
rately allocated memory. It follows that for each activation
ay € ® there must be at least

Maci(ar) = Mi(k = 1)+ Moue(bj),  ax = (bj,n(b;)) (7)

memory space. Taking the maximum of all Mac.(ax) du-
ring a schedule period, leads to the implementation measure

Mo (®):
Mo (®) = max {Mace(ar)} (8)

This implementation measure describes the minimum
achievable amount of data memory for the signals s; with
Dg(s:) = 0 in case all blocks do not process signal samples
in-place. This implementation measure thus may serve as
an optimization criterion for finding an optimum schedule,
i.e. a schedule & which minimizes Ma.(®). Fig. 1 shows a
block diagram with two associated SA-schedules.
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a<I>1= 2b1,2b2,b3,2b4,b5 =>]‘/Iacg @1 =34
b@z-—— 2b1,2b4,b5,2b2,b3 =>l".[¢ct Qz = 38

Figure 1. Influence of the scheduling on M.

In a second step the signals of the block diagram have
to be mapped onto memory segments. In fig. 2 the signals
of the block diagram of fig. 1 are mapped onto memory
according to the live times which can be determined by the
schedule. For both schedules exactly Mac:(®,/2) memory

is needed.

a)®, = {20y, 2by, b3, 2b4, bs }, non-inplace
b)®, = {2b,, 2b4, b5, 2b2, b3 }, non-inplace

Figure 2. Mapping of signals onto memory segments

Notice that the optimum data memory compaction is a
two-step optimization problem. First a schedule has to be
found which yields minimum M,..(®) and second all signal
buffers have to be mapped onto memory such that buffers
optimally share memory and M,c.(®) is the amount of data
memory needed. In the sequel we derive the optimum sche-
duling problem. Optimum memory allocation based on op-
timum scheduling will be presented in a forthcoming paper.

4. SCHEDULING FOR OPTIMUM DATA
MEMORY COMPACTION

Given a block diagram F for which an optimum SA-schedule
is to be found. In order to derive the number of live samples
after schedule step n we define the cost matrix I = (¢;;) for
all signals with Do(s;) =0 :

={ (}Ziﬁiﬁg&%

For the evaluation of the sehedule we define the schedule
variables aj 5, 1 < j, k < Ny = p:

if E(s:) =b; ADo(si)=0
if A(si)=b; ADg(si)=0

else

~ _ [ 1 if block b; is activated at k
k=10 else

The number of live samples Mi(n) in all signals s; with
Do(s:) = 0 after schedule step n can be computed now by
means of the cost matrix I' and the schedule variables:

N, Ny n
Mz(n)=ZZC-'j (Zaj,k) 1<n<p (9)

=1 j=1 k=1
For the evaluation of M,..(®) we further define the cost

matrix I' = (c};):

i = { O(si)ar(b;) A(8i) = bj A Do(s:) =0
i 0 else

With this cost matrix we can describe the implementation
measure Mace(®):

¥ _ A _ Tt
Afac,(é)-lsxrnlgﬁu{.u,(n 1) +I'T"a(n)} (10)

The vector I denotes the unity vector and a(n) the sche-
duling vector a(n) = (ayn,82,n,.--,an,,,n)7. Goal of the
optimization is to find an optimum schedule &, such that

Maci(®Bope) = a’ﬁi’l {Moace(®)}

In order to linearize this min-max optimization criterion,
we introduce a new variable M ACT together with Ny con-

straints:
minimize MACT (11)
such that for 1 < n < Ny
N, Ny n—1 N, Ny
MACT > Z z Cij (Z a,‘,k> + Z Z cijain  (12)
i=1 j=1 k=1 i=1 j=1

holds. Beside this linear optimization criterion we have to
derive linear constraints on the schedule variables. The first
class of constraints can be derived from the fact, that & is
a SASA-schedule:

Ny

Zaj’k =1

k=1

1<j < Ny (13)

Since we are interested in a sequential schedule, only one
block may be activated at time k:
Ny

Z ajx =1,

j=1

1<k < Ny (14)

The last class of constraints follows from the signals of the
block diagram, which can be regarded as simple precedence
relations between adjacent blocks by = A(si),b; = E{s:),
since F has an associated SA-schedule:

Ny

Z (kaix — kajp) < —1 Vs; : Do(si) < n(b;)gr(b;)I(s:)
k=1

15)
Thus optimization criterion 4 together with the constraints
4, 13 and 14 form an integer linear programming problem,
which can be solved using standard software packages.
Since an ILP is np-hard, we introduce a novel scheduling
heuristics, which is derived from the above ILP.

5. SUBOPTIMUM SCHEDULING FOR
MINIMUM DATA MEMORY
CONSUMPTION

In the following we present a scheduling criterion which de-
cides at time k which of the blocks to activate next. This cri-
terion can be used for S-class scheduling algorithms which
successively schedule a block depending on whether there
are enough input samples available for a block. Although
we restrict the discussion to SA-schedules, the presented
criterion can also be used for multiple appearance schedu-
les.

Due to eq. (4) and (7) scheduling a block b; at step n de-
termines the number of live samples M;(n) and the number
of output samples for which additional memory space has
to be allocated. Thus if at time n — 1 more than one block
can be activated, we have to select one of these blocks in a
way that M,c:(®) is minimized.

Given now a candidate set of blocks

C= {bj | Ve, E(si) =b; : di(n—1) > O(s;)} (16)
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which all may be activated at time n, we can split this set
into two sets. The first set of blocks includes all blocks
whose activation does not increase the number of live sam-
ples, i.e. Mi(k) < Mi(k—1), k> n:

Cr = {bj | b; € CAMin(b;) > Moue(bj)} (17)
The second set Cs includes all blocks which increase the
number of live samples upon their activation, i.e. Mi(k) >
Mi(k—1), k> n:

Cr ={bj | b € CAMin(bj) < Mou:(b;)} (18)
We now regard all {[C”' permutations of blocks of C which
form a valid possible subschedule

&, = {ak | ar = (bj,n(b;)),b; € C}

for blocks of C' and ignore the previous activations ax with
k < n. Then the subschedule ®.pc = {1, 2} with

&, = {ax | ax = (bj,n(b;)),b; € C1 } (19)
&2 = {ax | ar = (bj,n(};)),b; € C2} (20)

exhibits the minimum number of maximum live samples:

Jmax (MR} = Mi(n)+ ) Mou(bs) = D Min(b;)

apt
b;€C b;€C

< max {Mi(k)} n<k<n+]|C|

- ‘)m# opt

Since we have only regarded all subschedules &, this might
be a local but not a global minimum.

Now the question arises how to minimize Myce(®m) of
all subschedules ®,,. This minimization can be achieved by
sorting the blocks bj, b; € C) according to Moy (b;):

Moue(b;) > Moy (bi) = b before b; (21)

It can be shown that this sorting is sufficient for obtaining
minimum Mgc:(®P1m) concerning all permutations ||C\||! of
valid schedules ®,,, of blocks in C;

The same can be shown for the second set C;. Sorting
all blocks of Co with

Min(b;) > Min(bi) = b; before b; (22)

yields minimum Mc:(®2m) concerning all permutations
”C2L of valid schedules ®2,,.

us a scheduling algorithm based on this heuristic mi-
nimization criterion simply has to insert each successor of
the last scheduled block which can be activated into C; or
C> and has to sort within these sets according to rule 21 or
rule 22. In figure 3 an example for such a heuristic sche-

8 4

s b2 “(®3)" .
%
82 Zl

Qopt = {blrb4vb5»b2lb3»b6} = Mac'(Q) =18

Figure 3. Optimum schedule through the heuristic schedule
criterion

dule algorithm is shown. At n = 1, C1 = {b2,b4} and C
is empty. Since Mou:(bs) =2 < Mo,.t(b-z) = 4, block b4 is
scheduled before by. In the next step n = 2, C; = {b2, b5}
holds. Since Mouc(bs) = 1 < Moue(b2) = 4, bs is scheduled
next. This schedule is also the optimum one.

An example for the suboptimality of the selection crite-
rion can be seen in the schedule for the block diagram of
figure 1. At n =1, C; = {44} and C, = {b2}. Following
the above selection criterion, block by is scheduled before
b2, which is suboptimal.

6. APPLICATION

As an example for the derived scheduling methods, a reali-
stic application example is given. In fig.4, the block diagram
of a mobile satellite receiver is shown [6] .

Figure 4. Rates within the mobile satellite receiver block dia-
gram

The heuristic scheduling results in
&, = 10564, 264B, 24C, 24G, 24 H, 241, 240J, 1056 D, 264E,
24F, 24K, 24L, 24 M, 240N, 240 P, 2405, 240U, V, Q, R, W,
requiring 2040 words of memory.
One optimum scheduling sequence (there are several) is
&, = 10564, 2648, 24C, 24G, 1056 D, 264E, 24F, 24K, 24L,
24M, 240N, 24 H, 241, 240, 240P, 2408, 240U, V,Q, R, W,
requiring 1920 words of memory. It took about 4 days to
solve the ILP problem, whereas the heuristic approach de-
livered its result within 30 seconds.

7. CONCLUSION

We have presented a novel optimum scheduling approach
resulting in a minimum of data memory consumption for
single appearance constellations. This approach has been
identified as an ILP problem, driving us to define an efficient
heuristic. For a realistic application this heuristic has been
shown to result in a minor degradation of data memory
efficiency, offering a reliable complexity estimation within a
significantly reduced amount of time.
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