FINE GRAIN CODE SYNTHESIS WITHIN A BLOCK DIAGRAM ORIENTED CODE
GENERATION ENVIRONMENT

Markus Willems, Matthias Pankert] Sebastian Ritz
611810 ISS, RWTH, 52056 Aachen, Germany

ABSTRACT

Code generation for a system specified by a block dia-
gram facilitates the fast and efficient evaluation of the de-
sign space. As a drawback, automatically generated code
includes a certain amount of data management overhead
compared to handwritten code, especially when the block
diagram includes fine granular structures. Within this pa-
per we present a strategy how to overcome certain types of
overhead by introducing a novel code generation approach.
While traditional tools are based on a one-to-one correspon-
dence between a block on the block diagram level and a
functional kernel on the code synthesis level, now one new
functional kernel for a group of blocks is generated automa-
tically. Doing so, a maximum of dataflow information avai-
lable from the block diagram level is employed to organize
the kernel in an efficient way, regarding to the designer’s
criterion. As a result, reduction in memory consumption
and an increased throughput can be achieved jointly.

1. INTRODUCTION

Code synthesis for digital signal processors (DSPs) of a sy-
stem specified by a block diagram is becoming more and
more popular. This i1s motivated by the possibility provided
by advanced tools to evaluate the design space (spanned by
throughput, memory consumption, latency) in an efficient
way [1,2]. Additionally, the integration of a simulation en-
vironment allows to generate a code correct by construc-
tion, matching the system design criterions. Flexibility and
speed up of the system design have to be paid for by a cer-
tain amount of code inefficiency compared to handwritten
code. These inefficiencies can be interpreted as a compiler
overhead. Within this paper we deal with overcoming spe-
cific types of these inefficiencies, which are inherent to the
proposed model of code synthesis.

Code generation for systems specified by a block diagram
matching the SDF paradigm [3] can be separated into two
major task, taking place on different levels of abstraction:

1. Establishing a schedule by extracting the information

on the block diagram level (precedence relations, signal
rates) by dataflow analysis.

2. Building up the correct functionality in the target lan-

guage by employing the information available from step
1. In the sequel we will address this as synthesis on the
code level
Obviously, the way task 2 is performed influences the sche-
duling strategies implemented for task 1. Several optimiza-
tion strategies located on level 1 have been presented in the

*Matthias Pankert is now with Philips Research, P.O. Box
1980, 52021 Aachen, Germany

2647

literature, e.g. [4], [5]. They have all been driven by a spe-
cific code synthesis model, and calling different strategies as
’optimum’ simply results from differences in the proposed
synthesis models.

The outline of this paper is as follows: starting with a
brief review on dataflow and its notation, the reference syn-
thesis model on the code level is presented. This leads to an
identification of shortcomings inherent to the system, follo-
wed by the general idea how to overcome a certain amount
of data management overhead by automatically generating
more complex functional kernels (section 2). In order to
extract as much information from the dataflow description
as possible, the necessary dataflow analysis is addressed in
section 3. Section 4 covers the transformation of the block
diagram information into an intermediate format and the
process of kernel generation. Finally, section 5 provides
some numbers for a simple block diagram, expressing the
potential that comes with the presented approach.

2. THE CODE GENERATION
ENVIRONMENT

We suppose that a digital signal processing system is spe-
cified by means of a scalable synchronous block diagram
F = (B,S,A,E, Do). A block b; € B specifies a signal
processing component of arbitrary granularity. The signals
s; € S specify the data flow between the blocks. The to-
pology of the block diagram is represented by the functions
A() and E() defined on the signal set 5. A(s;) is the block
producing samples which are written in s; and E(s;) is the
block consuming samples which are stored in s; and have
been produced by A(si). The number of initial samples on a
signal s; are specified by Dy(si). According to the synchro-
nous data flow semantics a block b; = A(s;) produces O(s;)
samples written into signal s; and consumes I(sx) samples
from the signals sy, where b; = E(sx). Additionally in the
SSDF domain [2] a block may consume and produce any
integer multiple n(b;) of the predefined rates, where n(b;)
denotes the local blocking factor associated with block b;.

The schedule & (the result of task 1) is an activa-
tion sequence ® = a;,az,...,a;, where an activation a; =
(bx,n(bx)) either denotes the activation of block bk n(b)
times or the activation of a subschedule ®; k; times (with
ki the looping factor), a; = (&, k). The latter describes
a hierarchical schedule. Scheduling and hierarchization are
based on dataflow analysis, while not considering the block’s
functionality.

We consider the code synthesis model of fig. 1 as our

reference model for task 2 in the sequel. This synthesis
model is applied by the Descartes system [2].

0-7803-2431-5/95 $4.00 © 1995 |EEE

block contexy
(parameler, siates)

Setemtion of Scheduie:
{sigorkhmical «3A7(..B.)..
main() {
call of inielisalion
[

7 Remksalion of the schedule */
L
.
conlext swich
block A
cal of aigorthmecal
kemel block A

for (i=0; i < 7. i+ /teomechical loop/
-

context swilch
block B
cald ol aigonthmecal
kemel block 8
.
.
)
.
.
)
call ol postproc.
kemels

Figure 1. Software structure

Fig. 1 shows a one-to-one correspondence among a block
on the block diagram level and a functional kernel on the
code level. Signals correspond to FIFOs realized in me-
mory. A local blocking factor is not transferred into a loop
but handled by the algorithmical kernel, whereas a looping
factor results in an explicit including all kernels correspon-
ding to blocks of the hierarchy level. The time necessary to
execute the code can be separated into two categories:

- time necessary to perform the algorithmical computations
and

- time necessary for data management operations.

Latter includes context switching as well as storage opera-
tions between the execution of different algorithmical ker-
nels. With regard to code efficiency, data management can
be seen as an overhead, increasing memory consumption
and runtime. Scheduling strategies (task 1) established to
increase throughput try to increase the ’algorithm-to-data
management time’ ratio by sequencing the blocks in a sui-
table way. In general, this comes with an increase in data
memory consumption. Obviously, the efficiency of these
scheduling strategies is limited by the kernel’s granularity.

The proposed strategy is to increase the kernels granula-
rity by breaking up the one-to-one correspondence among
block diagram and code level. Rather we express the func-
tionality of multiple functional kernels of the reference sy-
stem by one new kernel in our concept. This reduces the
number of context switches and data storage operations
(since less data exchange via memory is required) and the-
refore reduces data management overhead.

Another view to this concept is virtually replacing mul-
tiple blocks in the block diagram by one new block, repre-
senting the new kernel’s functionality. There are several
reasons why an explicit replacement of a block is inferior to
an automatic kernel generation:

- design flexibility is reduced. Functional analysis is requi-
red prior to the system specification

- a block representing a very special functionality is not
reusable, lacking an important argument for using a code
generation environment

- when defining a block’s kernel, datafiow information in
general is not available. The kernel is not tailored to its
dataflow environment.

In this paper, kernels that are candidates for combination
are so called fine grain kernels, identified by a low functional
complexity, like adders, subtractors, forks, dividers, multi-

pliers, constant sources. This is motivated by the large
relative gain that can be achieved while combining comple-
xities that are easy to handle. Fine grain structures occur
frequently in system specifications, either to glue certain
coarse grain blocks or to build up functionalities that are
not represented by coarse grain blocks.

The following questions come with the proposed concept:
a) which kernels are allowed to be combined?
b) which information relevant for the new kernels’ synthesis
is available from dataflow analysis?
c) how to transfer the original kernel functionalities into the
new kernel functionality?
d) which performance gain can be achieved?

3. DATAFLOW ANALYSIS

To. visualize the argumentation, a simple example shall
be utilized throughout the following sections, presented in
fig.2. Here all rates are equal to one except of the output
rate of 'SOURCE’, producing 10 data samples per execu-
tion. Signal ’d’ contains two initial data samples.

Figure 2. Example

As stated above, on the block diagram level the combina-
tion of dedicated functional kernels to one functional kernel
corresponds to a hierarchization of the corresponding de-
dicated subdiagram. Constraints on the hierarchization of
a dedicated subdiagram have been identified in [6]. Addi-
tionally, if not the complete subdiagram is allowed to be
hierarchized, the procedure presented in [6] offers all pos-
sible sub-subdiagrams (so called groups) which are allowed
to be hierarchized. The kernels corresponding to blocks of a
group are allowed to be combined. For the example of fig.2,
the kernels of the complete encircled subdiagram of fine
grain blocks are candidates for combination. On the block
diagram level this corresponds to replacing the complete
group by one block bnew. This constellation is presented in
fig.3.

Scheduie:
1 x SOURCE

in out 10 x NEW
gjms}———! NEW 10 x SINK

10

Figure 3. 'new’ block diagram

An efficient generation of the kernel represented by bnew
requires the information on the number of samples d(s;)
available from every input signal s; of bn.. at kernel activa-
tion time. Therefore, the 'new’ block diagram is scheduled
(a block diagram level operation), following the guidelines
set up by the designer. This ’external’ schedule allows to
identify d(s:) = n(bnew)I(s:). In the following we assume
a single appearance ’external’ schedule. Nevertheless, the
proposed concept is easily extended to general constellati-
ons, exceeding the scope of this paper.

Since for the proposed fine grain constellations only
homogeneous blocks are included (I(s;) = O(sx) =
1, Vs;, sk € S), I(s:) is not effected by hierarchization.
Notice that all optimization techniques performed on the
block diagram level (e.g. [4],[5]) can be applied to the ’ex-
ternal’ schedule. The generation of a new kernel simply
corresponds to a dedicated hierarchization that has to be

2648

obeyed by the scheduler. As an important consequence, the
automatic generation of a new kernel does not destroy the
systematic design space evaluation capabilities of the code
generation environment.

The ’external’ schedule is included in fig.3, indicating that
10 input samples are available at kernel activation time, a
vectorization with factor 10 becomes possible. This infor-
mation might be utilized at kernel generation time.

Dataflow information includes precedence and looping fa-
cilities, information crucial for the kernel generation pro-
cess. Therefore the dataflow information inherent to the
group represented by bpew has to be extracted as well. This
is done by an ’internal’ schedule which is optimized with
regard to maximum vectorization, motivated by the way of
transforming the kernel’s functionality into the new functio-
nality (section 4). To achieve maximum vectorization, the
external scheduling information might be utilized. Follo-
wing the principles of scalable static dataflow (SSDF, [2]),
n(bnew) becomes the global blocking factor for this inter-
nal schedule. Hence, all relevant dataflow information is
included in the internal schedule.

For the example, fig.4 presents the internal schedule, con-
sidering the information that 10 samples are available at
activation time. The feedback structure results in a hierar-
chical schedule.

ICONSB
internai Schedule:

"a 10 x CONST
10 x MUL

in b m c m out
MUL 5 x{
2x FORK
}
Figure 4. 'internal’ schedule

4. TRANSFORMATION TO THE FOREST
LEVEL

In order to allow an evaluation of the design space, the
kernel shall be synthesized regarding to the designer’s cri-
terions. As well, the concept shall be open to extensions of
the fine grain alphabet. Therefore an internal format is in-
troduced. This internal format, named the forest level, is an
extension of the classical expression tree representation [7],
considering additional information coming from the block
diagram representation.

4.1. From kernel to expression tree

An expression tree contains a root node, operational nodes
and leaf nodes. There is exactly one topological prede-
cessor to a root, a leaf possesses exactly one topological
successor. Operator nodes possess exactly one topological
successor, a minimum of one and a maximum of two to-
pological predecessors. The limitation on two predecessors
avoids problems coming with the precedence of operations.
Operational nodes considered in this paper are: ADDI-
TION, MULTIPLICATION, SUBTRACTION, DIVISION.
For the transformation, only basic trees are allowed, con-
taining a maximum of one operational node. A basic tree
without operational node is denoted an assignment tree.
The transformation into the internal format comes as a
combination of block diagram and code level information.
Operational nodes are determined by the functionality inhe-
rent to the kernel. Each input signal of the corresponding
block corresponds to a leaf node, each output signal to a
root. The signal type provides the node’s type, ensuring
equivalence of the original and the transformed representa-
tion. A root that corresponds to a signal s; is a topological
predecessor to the leaf that corresponds to the same signal

si. A block may be transferred to more than one tree (e.g.
Fork). A constant source is transferred into an assignment
tree, with the leaf a constant leaf.

Some extensions come with additional information avai-
lable from the block diagram level:

A signal incident to only one block of the group corre-
sponds to an external node, otherwise it is internal. An
internal node is a state node if the corresponding signal
contains initial data, otherwise it is temporary. A state
node contains the information regarding the number of in-
itial data.

The ’internal’ vectorization information is provided to the
internal format: a local blocking factor n(bin:) becomes the
tree factor t(7;) for all trees T; corresponding to block bin:.
t(T;) indicates the number of executions of the functionality
of T; prior to the execution of another tree. A hierarchical
schedule corresponds to a forest F. F includes all trees
Ti,...,T, corresponding to the blocks of the hierarchical
loop. The loop factor k; is transferred to a forest factor
HF)=tT,...,Tn).

The knowledge of execution precedence inherent to the
signals is expressed as well. A tree T} containing a root
that corresponds to a signal s; is a predecessor of tree T3
containing a leaf corresponding to s; as well. This prece-
dence shall be represented by a solid arrow from Ti to T5.
Note that execution precedence is a precedence among trees.
Nevertheless, if a precedence arrow crosses the border of a
forest, there is implicit precedence even among trees and fo-
rests. An exception is possible for a signal containing initial
data, depending on the number of data consumed by the to-
pological successor. So execution precedence information is
a conditional precedence information.

See the transformation of fig.2 into the forest level, pre-
sented in fig.5. Dotted arrows represent topological prece-
dence, solid arrows execution precedence.

A

1
(o] S

(o

a
. B D
in .lMULI b o Ao F—s—s{rork]—2ut 2xC
2xD
20 d }

[4]
.,

;
R A N

Figure 5. Transformation to the forest level

Notice the effect of signal 'd’: Tree ’D’ is a predecessor
of tree *C’ with regard to execution precedence, since signal
’d’ contains two initial samples. Of course, root ’d’ of "D’
is a topological predecessor of leaf ’d’ of ’C’. No additional
effort has to be spent on execution precedence since this
is completely determined by the information available from
the internal schedule.

4.2. Valid Operations on the Forest Level

Without loosing any information inherent to the forest level
representation, several operations are possible:
- Separation of a tree

2649

A tree T with #(T) > 1 can be separated in two trees Tz, T3,
with t(Tj_) -+ i(Tg) = t(T)

- Construction of a forest

Two trees Ti,T> can build a forest if no execution prece-
dence is violated. The forest factor ¢(7},T>) has to be a
common factor of the tree factors t(T1) and #(12).

- Inclusion of a tree T} to a forest F

A necessary condition is t(71)/t(F) = ¢, with c an integer
and no violation of execution precedence.

- Combination of two trees Ty, T3

Necessary condition: Leaf L of T temporary and only suc-
cessor of root Ry of T1, t(Th) = t(T2); Ti, T> are allowed to
build a forest. Combination by removing R; and L2, ma-
king the predecessor of R, the predecessor of the successor
of L, (and vice versa).

Here the impact of maximum vectorization becomes vi-
sible, since all types of combination can be achieved from
a maximum vectorization. This does not hold the other
way since on the forest level there is no information why
the precedence relation has been established that way. In
other words: one can always move a tree into a forest (if
not violating the above constraints), but never move a tree
out of a forest.

4.3. Target Independent Optimizations

Since basic trees can be seen as the most general represen-
tation of the functionality and independent from a specific
code generation backend, all target independent optimiza-
tions shall result in these basic trees. All proposed concepts
correspond to well known techniques in compiler technology
[7).They are illustrated by references to the constellations
of fig.5.
- Combination of T1,T>, with at.least one T; an assignment
tree. This results in reducing the number of trees by one:
Combination of A’ and ’B’, resulting in replacing leaf « by
a constant leaf c,.
- Arithmetic optimizations

multiplication with zero: all leaves succeeding the tree
become constant leaves with value zero: if ¢; = 0, tree 'C’
becomes an assignment tree with input d only.

addition of zero, multiplication with one: the contents of
the second leaf is transferred to the root, the tree degene-
rates to an assignment tree: if ¢c; = 1, tree 'B’ becomes an
assignment tree with ’in’ as its leaf.

4.4. C-code-backend

Each basic expression tree matches a C-expression. A tree
factor t(T) > 1 is transferred into a loop over the expression
resulting from T. A forest factor f(F) > 1 results in a loop
over the expressions of trees that belong to the forest. The
freedom inherent to the forest level transformations beco-
mes obvious here, since it results in different realizations
of the same functionality. It allows to synthesize the code
with regard to the designer’s criterions.

C-expressions allow additional transformations on the fo-
rest level:
- more than one operation is allowed, therefore the combi-
nation of non-basic trees is allowed: combination of ’AB’
with ’C’, removing variable . This implies to include 'AB’
into the forest first, resulting in a tree factor of 2 (10/5)
- assigning a result to more than one variable. Therefore
trees containing more than one root are allowed: combina-
tion of ’ABC’ and both trees of *D’, resulting in removing
c and assigning two roots 'd’ and ’out’, therefore only one
tree remains.

5. RESULTS

Four different C-code versions for the system specified in
fig.2 are compared with regard to throughput, data me-
mory and program memory consumption. The first version
is the classical approach with a one-to-one correspondence
between block diagram and code level, with the functio-
nal kernels activated by function calls. The second ver-
sion is classical as well, with the kernels inlined. The
third and fourth version follow the new strategy. Here
the third version results from an immediate C-code gene-
ration from the forest level without C-specific transforma-
tions with ’AB’ outside the forest. The fourth version fi-
nally considers all C-specific transformations, resulting in
one expression only. The state information included in state
nodes (for the example: nodes ’d’) result in additional in-
structions . The code has been profiled on a TMS320C40.

code version throughput program mem. data mem.
(Ksamp/s) (words) (words)

function call 129 271 24

nlined 156 157 24

basic tree 321 127 20

C-transform. 452 120 20

The improvement even for a simple constellation that is
supposed to be best suited for inlining the functional kernels
results in a gain in both, throughput (290%) and memory
consumption (-24% program, -17% data memory), always

compared to the best ’traditional’ version.
6. CONCLUSION

We have presented a systematic approach of how to over-
come a significant amount of data management overhead
inherent to code antomatically generated from a block dia-
gram system description. Effort has been put on fine grain
structures since these come with low functional complexity
and large data management overhead. A procedure how to
extract the datafiow specific information has been presen-
ted, as well as how to employ this information for a system
specific code generation. Even simple examples show the
potential of the proposed strategy, expanding the design
space by reducing memory requirements while enhancing

the throughput REFERENCES

[1] J. Buck, S. Ha, E. Lee, and D. Messerschmitt, “Pto-
lemy: A platform for heterogenous simulation and pro-
totyping,” in Proc. 1991 European Simulation Conf.,
(Copenhagen, Denmark), June 1991.

[2] S. Ritz, M. Pankert, V. Zivojnovic, and H. Meyr, “High
level software synthesis for the design of communication
sytems,” IEEE Journal on Selected Areas in Communi-
cations, pp. 348 -358, Apr. 1993.

[3] E. A. Lee and D. G. Messerschmitt, “Synchronous data
flow,” Proc. of the IEEE, vol. 75, pp. 1235-1245, Sep-
tember 1987. .

[4] S. Ritz, M. Pankert, V. Zivojnovi¢, and H. Meyr, “Op-
timum vectorization of scalable synchronous dataflow
graphs,” in Intl. Conf. on Application-Specific Array
Processors, pp. 285-296, Prentice Hall, IEEE Compu-
ter Society, 1993.

(5] S. Bhattacharyya and E. Lee, “Scheduling synchronous
dataflow graphs for efficient looping,” Journal of VLSI
Processing, vol. 6, pp. 271 — 288, Dec. 1993.

[6] M. Willems, “Hierarchisation of Dedicated Subdia-
grams,” Internal Report, Aachen University of Techno-
logy, 1994.

[7] A. Aho, R. Sethi, and J. Ullman, Compilers: Principles,
Techniques, and Tools. Addison-Wesley, 1986.

2650

