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ABSTRACT

One area where on-line handwriting recognition tech-
nology is most critical is the domain of small portable
platforms. Because such platforms have limited re-
sources, it is not presently practical to consider a con-
tinuous parameterization for the hidden Markov mod-
els used in the recognition. On the other hand, discrete
parameter techniques such as used in speech recogni-
tion are difficult to apply, because there is no well-
understood handwriting equivalent to phonological rules.
A possible solution is to extract this information di-
rectly from the data, by constructing an alphabet of
sub-character, elementary handwriting units. The per-
formance of this method is illustrated on a discrete
handwriting recognition task with an alphabet of 81
characters.

I. INTRODUCTION

An automatic handwriting recognition system can be
viewed as aiming to recover the character sequence
most likely to correspond to some given handwritten
evidence. This approach assumes the existence of prob-
abilistic models for estimating the likelihoods of candi-
date character sequences. Accordingly, in the past few
years there has been a growing interest in probabilistic
techniques for (both off-line and on-line) handwriting
recognition; see, e.g., [1]—[5].

At ICASSP’93, we disclosed an algorithm for on-line
handwriting recognition based on tied mixture contin-
uous parameter hidden Markov modeling [3]. This ap-
proach relies on a decomposition of the total character
sequence likelihood into a language model contribu-
tion and a handwriting channel model contribution.
To characterize the handwriting channel, we derive a
left-to-right hidden Markov model (HMM) for each al-
lograph sufficiently represented in the training data.
These ‘allographic models are then concatenated appro-
priately to represent whole character sequences. This
approach proved useful to tackle a large alphabet hand-
writing recognition task.
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At ICASSP’94, we enhanced this algorithm to en-
sure that the HMMs closely track the allograph tra-
jectories in the underlying feature space (referred to in
[3] as the chirographic space). This capability is nec-
essary to adequately account for the numerous (and
sometimes severe) allograph deformations inherent to
unconstrained handwriting recognition. To correctly
capture realizations in the chirographic space, a greater
number of continuous parameter prototype distribu-
tions, or prototypes for short, is usually required. This,
however, may not be a realistic option due to the lim-
ited size of the available training data. An alternative
solution is to improve the partition of the underlying
feature space based on the concept of contextual su-
pervision [5]. This leads to enhanced allograph rep-
resentations by relating the HMM allographic mod-
els to their manifestations in chirographic space. We
showed in [5] that this approach has two main advan-
tages: (i) it better accounts for both intra-speaker and
inter-speaker variations in handwriting; (ii) it makes
better use of the available training data than its unsu-
pervised counterpart.

This paper explores the consequences of the super-
vision process introduced in [5] to the problem of HMM
parameterization. One area where on-line handwrit-
ing recognition technology is most critical to prod-
uct success is the domain of small portable platforms,
where keyboard entry is not a viable input option. Be-
cause both CPU and memory resources are severely
constrained on these platforms, however, it is diffi-
cult to accommodate continuous parameter approaches
like in [3]-[5]. Discrete parameter techniques such
as pioneered in speech recognition over the past ten
years would better fit the requirements. Unfortunately,
they are difficult to apply, because there is no well-
understood handwriting equivalent to phonological rules.
A possible solution is to extract this information di-
rectly from the data. More specifically, the supervised
framework described in [5] is used to construct an al-
phabet of sub-character, elementary handwriting units
on which to base the discrete parameterization.

The paper is organized as follows. In the next sec-
tion we discuss the issue of HMM parameterization,
and in Section III we briefly review the concept of su-
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pervision as introduced in {5]. Section IV describes
in greater details how to construct a data-driven al-
phabet of elementary handwriting units. Finally, in
Section V we present experimental results obtained on
a 81-character alphabet, discrete handwriting task.

II. PARAMETERIZATION

From a practical point of view, the fundamental limi-
tation of the recognition system described in [5] lies in
the choice of HMM parameterization. By using a con-
tinuous parameter framework, we force structural as-
sumptions on the output distributions, which can only
be alleviated by increasing the number of parameters
in the system. This, in turn, tends to require a greater
amount of training data, not to mention more compu-
tational power. It would be much more expedient to
select a discrete parameterization for the chirographic
HMMs. Then the output probabilities would not be
constrained to follow a particular distribution (such as
Gaussian), thus reducing the overall number of param-
eters and thereby the requirements on data and CPU.
The problem, however, is the loss of information due
to vector quantization, which is guaranteed to occur in
a discrete parameterization. To minimize this loss, the
vector quantizer must be designed very carefully. In
particular, this raises the issue of finding a suitable
alphabet of handwriting units to perform the discrete
parameterization. Using whole characters as units, for
example, is not likely to produce a good vector quan-
tizer due to inherent variations in handwriting, writer
variations, as well as systematic variations in the fea-
tures due to changes in the handwriting context. This
is precisely this realization which prompted us to select
a continuous parameter approach in the first place [3].
A solution to the above dilemma is to further ex-
ploit the supervision process introduced in [5]. Re-
call from [5] that in the course of constructing su-
pervised chirographic prototypes, we build a cluster-
ing tree which completely exposes the relevant inter-
relationship between all potential clusters. This clus-
tering tree is then pruned, possibly using a different
criterion, to determine the final clusters, i.e., the de-
sired chirographic prototypes. This pruning is nor-
mally adjusted to achieve a suitably fine partition of
the underlying feature space. Clearly, it is also possible
to prune the tree further, so as to obtain a coarse par-
tition of the space. The resulting distribution may not
be adequate to define a rich enough set of prototypes.
On the other hand, it represents a way to characterize
broad regions in a supervised, data-driven fashion.
We interpret each such region as the manifesta-
tion of an elementary (sub-character) unit of hand-
writing, much more specific than the character itself.
This has immediate implications for discrete parame-
ter modeling: it suffices to use the collection of such
(data-driven) elementary units as the handwriting al-
phabet used in the parameterization. Note that each
of these units can be easily expressed, through the
above clustering tree, as a mixture of prototype dis-

Description Level

word /Qg\

character d o] g
allograph d2 g1
allographic HMM O_Q_O_,
feature vector . e f

handwriting segment
tag(t;) = [ allograph 03, state 2, mid-segment |
Fig. 1. Illustration of Tagging Procedure.

tributions. This approach is therefore analogous to
a strategy commonly used in speech recognition, with
the above elementary handwriting unit playing the role
of a phoneme. To pursue the analogy further, the clus-
tering tree then embodies the equivalent of the phono-
logical rules used in speech recognition.

I11. SUPERVISION

As emphasized in [5], the main purpose of supervi-
sion is to suitably partition the underlying chirographic
space, so that a proper representation is obtained for
the chirographic realization of each allograph. Bottom-
up clustering leads to a hierarchy of allographic chiro-
graphic realizations, and pruning finalizes each of the
elementary units to achieve a suitable level of general-
ity and robustness. For the sake of flexibility, the two
steps need not operate under the same criterion.

To allow for supervision, some preliminaries must
be satisfied. As an initial step, we therefore assume
that some handwriting has been recorded, signal pro-
cessed, and Viterbi aligned against suitable allographic
Markov models (such as those derived in [3] and de-
scribed in more details in [4]). On the basis of the
Viterbi alignment, each feature vector is tagged with
an index which unambiguously identifies the following:
(a) the identity of the associated allograph A; (b) the
location Lg of the state of the allographic model A
against which the feature vector is aligned; and (c) the
location Lp of the feature vector within the handwrit-
ing segment corresponding to the allographic model A
where the feature vector is aligned.

To fix ideas, the above tagging mechanism is illus-
trated in Fig. 1, which examines the different descrip-
tions available for the word “dog,” in order of increas-
ing level of detail. The word can be expanded at the
character level, or, taking the context into account,
at the allograph level. Each allograph can in turn be
associated with an allographic HMM, cf. [3] and [4].
Further down, we arrive at the feature vector level. In
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the example of Fig. 1, the feature vector f; is part of
the allograph 03 and has been Viterbi aligned against
the second state of the associated allographic HMM.
In addition, f; also embodies a portion of handwrit-
ing which has occurred in approximately the middle
(shaded area) of the handwriting segment represent-
ing “o0.” Thus, in this example, we could write A = 03,
Ls=2,and Ly =1/2.

Clearly, two feature vectors tagged with the same
index through the above tagging procedure share ex-
tremely similar chirographic properties. In other words,
each tag represents a very specific chirographic sub-
event, which in turn can be used to supervise the pro-
totype and elementary unit construction. Note that
the main purpose of the measure Lp is to identify tran-
sient effects at the boundaries of each handwriting seg-
ment. Because this measure is essentially uninforma-
tive within each character, a practical implementation
of (¢) may threshold the information Lg away from
the boundaries. In the experimental results reported
in this paper, we used a threshold of 4 frames. Thus,
all positions Lp falling more than 4 frames into the
handwriting segment and more than 4 frames before
the end of the handwriting segment were assigned an
identical value (1/2). We found this useful to keep the
number of tags manageable. .

IV. ELEMENTARY UNITS

After all training vectors have been appropriately tagged,

the complete algorithm proceeds as follows: (i) for each
allographic model, pool together all the frames that
have been aligned to each individual state, and com-
pute their centroid and their count; (ii) construct a
bottom-up binary clustering tree which completely ex-
poses the relevant inter-relationships between all po-
tential clusters; (iii) prune this clustering tree accord-
ing to some appropriate criterion, so as to retain a pre-
determined number of clustering leaves; (iv) define an
elementary handwriting unit for each of the clustering
leaves found in (iii).

Note that all the feature vectors that have been
aligned with instances of each 3-tuple T' = (A4, Ls, LFr)
belong to the same specific chirographic sub-event in
the feature space. As in [5], we refer to the centroid
of these vectors as an anchor point of the chirographic
sub-event. By definition, there are as many anchor
points as there are 3-tuples (A, Ls, Lr). To these an-
chor points, we apply an iterative clustering procedure
whose output is a binary tree such as illustrated in
Fig. 2. The anchor points are at the bottom of the
tree, two of them being shown as 77 and T3. Each
node of the tree (like P) exposes an elementary “close-
ness” relationship between its two descendants.

As in [5], the goal is.to establish a hierarchy of po-
tential clusters. At the root of the tree, there is only
one cluster containing all the feature vectors. At the
bottom of the tree, there are as many clusters as there
are anchor points, each cluster representing a very spe-
cific chirographic sub-event. Alternatively, one can
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Fig 2. General Clustering Tree Structure
With Two Possible Cluster Sets.

take various cuts across the middle of the tree, two
of which are shown in Fig. 2 as the heavy solid and
dashed curves. These cuts correspond to different clus-
ter sets with various degrees of detail. For example,
the clusters associated with the dashed curve will be
intrinsically smoother than those associated with the
solid curve, thus inherently less descriptive but more
robust. For the purpose of deriving chirographic pro-
totypes it may have been sufficient to iterate pruning
until the solid curve of Fig. 2 was reached (cf. [5)).
Here, however, it may be more suitable to iterate until
the dashed curve of Fig. 2 is reached.

Once this is done, the statistics (mean vectors and
covariance matrices) obtained for all the anchor points
are propagated upwards to the leaves of the pruned
clustering tree just constructed. This defines a (Gaus-
sian) distribution at each leaf of the tree, which embod-
ies one elementary handwriting unit. Alternatively, it
defines a mixture distribution, incorporating the ap-
propriate prior probabilities based on cluster sizes, which
covers the entire inventory of allographs. This distribu-
tion uniquely defines the set of elementary handwriting
units sought.

V. EXPERIMENTAL RESULTS

We considered a handwriting recognition task with a
81-character alphabet comprising upper and lower case
letters, digits, and 19 special symbols (mathematical,
punctuation). Such a large alphabet makes the task
quite challenging due to numerocus shape confusions
(e.g., “quote” vs. “comma”). The data were collected
on a transparent electronic tablet which had a reso-
lution of 254 points/in. On the average, 60 coordi-
nate pairs per character were captured by the tablet.
Two series of experiments were conducted, addressing
writer-dependent (WD) and wrxter-mdependent (WI)
recognition, respectively. For the WD experiments,
eight writers each provided 300 words of training data



Continuous Discrete
Writer Parameter Parameter
Modeling Modeling
MAR 4.9 % 4.7 %
HIL 181 % 18.3 %
VIiv 10.3 % 102 %
JOA 9.9 % 9.8 %
ACY 21.7 % 22.0 %
NAN 9.1% 9.1 %
LOY 7.4 % 7.3 %
SAB 6.4 % 6.2 %
Average 10.9 % 109%
CPU Index 100 5

Table I. Writer-Dependent Character Error Rates
With Continuous and Discrete Parameterization.

and 150 words of test data. For the WI experiments,
the training data for these eight writers was pooled to-
gether, and four additional writers (unrelated to the
previous ones) each provided 150 words of test data.
Since our primary goal was to evaluate the goodness
of the algorithms rather than get absolute recognition
numbers, no language model was used for either ex-
periment. Note that, as a result, inherently ambiguous
characters such as “zero” and “oh” cannot be distin-
guished.

The error rates obtained using the discrete parame-
ter approach proposed in this paper were compared to
the error rates obtained using the (supervised) contin-
uous parameter method of [5], with the same training
data. Also compared were the amounts of CPU time
necessary to run the experiments in each case, nor-
malized to that obtained on the baseline (index 100).
In the WD experiments, eight distinct clustering trees
(one for each writer) were grown and pruned as de-
scribed earlier. In the WI experiment, only one clus-
tering tree was derived from the pooled data. The
results are summarized in Tables I and II for WD and
WI recognition, respectively.

Over all the speakers we consistently observe a large
decrease in the CPU time required to run the experi-
ment, while the average error rate remains essentially
unchanged. This reduction varies from a factor of 14
(WI) to a factor of 20 (WD). These results show that
discrete parameter HMMs are promising for on-line
handwriting recognition on small platforms with lim-
ited resources.

VI. CONCLUSION

We have described a discrete parameter hidden Markov
modeling approach suitable for handwriting recogni-
tion systems using allographic models. The discrete

Continuous Discrete
Writer Parameter Parameter
Modeling Modeling
MAL 20.3 % 204 %
BLA 16.4 % 16.4 %
SAM 26.0 % 26.5 %
WAR 12.7 % 13.2 %
Average 18.9 % 19.1%
CPU Index 100 7

Table II. Writer-Independent Character Error Rates
With Continuous and Discrete Parameterization.

labels used for vector quantization come from an alpha-
bet of sub-character, elementary handwriting units.
This alphabet is derived directly from the underlying
chirographic space by incorporating supervision to re-
late the HMM allographic models to their chirographic
manifestations.

The overall procedure is decoupled into a cluster-
ing phase followed by a pruning phase. This way, all
the general inter-relationships between various chiro-
graphic sub-events are uncovered once, while it is possi-
ble to customize both the alphabet of elementary units
and the underlying chirographic prototypes according
to the available training data. This makes for an ef-
ficient, streamlined recognition system, as evidenced
by a significant decrease in CPU requirements with re-
spect to a baseline system using a continuous parame-
terization.
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