MULTI LEVEL HMM FOR HANDWRITTEN WORD
RECOGNITION

Mou-Yen Chenfand Amlan Kundu?
tITRI, Hsinchu, Taiwan, ROC.
1US WEST Advanced Technologies, Boulder, CO 80303.

ABSTRACT

In this paper, we have introduced a novel approach for
handwritten word recognition using Multi-Level Hid-
den Markov Models (MLHMM). The MLHMM is a
doubly embedded network of HMM'’s where each char-
acter is modeled by an HMM while a word is modeled
by a higher-level HMM. In the character model, we
associate the observation with the transition. By in-
troducing the technique called ‘tied transition’, i.e.,
the segments which have the same semantic meaning
will be ‘tied’ together, we have successfully built up
the character model by an HMM with 4 states, 5 ob-
servations (or symbols) and 7 transitions (Fig. 2(a)).
Thus, as the states are not assigned any semantic
meaning, the re-estimation algorithm is applicable. At
the character level, the best model is chosen as the
recognition result. So, the character model is purely
a model discriminant HMM (MD-HMM) based ap-
proach. For the word model, on the other hand, both
the MD-HMM and the path discriminant HMM (PD-
HMM) [1] approaches are used and their respective
performances are demonstrated.

1 Introduction

In our previous approaches, the models are actu-
ally semi-hidden Markov models [1, 2], i.e., the states
of HMM’s are transparent during training. Because
the re-estimation algorithm such as the Baum-Welch
algorithm [3] does not preserve the correspondence of
the states to their semantic meanings, it is not suit-
able for the semi-hidden Markov models. The model
parameters, therefore, are estimated by counting the
occurrences of states, symbols, etc., from the labeled
training samples. In this paper, we have introduced a
novel approach for handwritten word recognition using
Multi-Level Hidden Markov Models (MLHMM). The
MLHMM is a doubly embedded network of HMM’s
where each character is modeled by an HMM while a
word is modeled by a higher-level HMM. The major

*The authors could be reached using the internet address
akundu@ad vtech.uswest.com .

2623

difference between the new system and the previous
approaches is the output-independence assumption of
the HMM [4]. In this new model, we associate the
observation with the transition. As the states are not
assigned any semantic meaning, the re-estimation al-
gorithm is applicable.

2 HMM Topology and Training

Using the segmentation algorithm [2, 4], most of
the characters are segmented into three segments or
less. For cursive writing, the characters are usually
linked by some meaningless strokes — ligature. Based
on these observations, we have found the character
model as shown in Fig. 2(a) to be quite suitable. The
five observation symbols in character models are:

W : the whole characters; L, M, R : the left, the
middle, and the right parts of the characters; V : null
segments, i.e., ligatures.

For the word model, in MD-HMM approach, we
cascade the character models while retaining only
one N observation between characters, as shown in
Fig. 2(b).

The following training procedures are applied to 26
character models individually.

2.1 Initialization

By examining the segmentation results of each
character, we manually characterize the segments as
W,L,M,R, or N. The transition probability a;; is
initialized by calculating the occurrences of pairs of
states. That is,

no. of transitions from s; to s;

0<4,j<3

1)
All the models start with the initial state s,. To es-
timate the symbol probability b;;(k), we first apply
the k-means clustering algorithm (with fixed SNR)
to group the training samples (feature vectors of seg-
ment images [1,4]) into several clusters. Please note
here that we have used a global codebook for all the
character models. The symbol probability for each
character model can be initialized by counting the oc-

a' ; — o
4 no. of transitions from s;

0-7803-2431-5/95 $4.00 © 1995 IEEE

currences of the symbols in each cluster. More pre-
cisely,

no. of times symbol(i,j) appears in cluster k

bij(k) = no. of times symbol(i, j) appears

where symbol(i,j) maps the observation emitted at
transition ¢ — j to one of { W,L, M, R, N }. We will
refer to b; j(k) as the probability of observing symbol
k with state transition ¢ — j. With these initially
estimated parameters, the Baum-Welch algorithm is
then applied to increase the likelihood of the models
using their representative training sequences.

2.2 Model Normalization

In the recognition phase of MD-HMM, we can sim-
ply classify the given observation sequence to the
class whose model has the largest best-path likelihood.
That is,

= a.rglguaéxw P,8,; P,=P(,,0]|)) (3)

P, is the best-path likelihood of model A, given the
observation sequence O, and this likelihood can be
found by the Viterbi algorithm [3]. The problem, ba-
sically, is to find a weight factor 8, associated with
each model A\, such that the overall recognition re-
sult (based on training set) is optimal. We choose
the range for the weight factors to be [-M,M], and se-
quentially optimize for each HMM starting from the
model that has the worst recognition performance. Al-
though this algorithm does not guarantee the optimal
set for the weight factors, it does ensure that the over-
all recognition rate of the training set would increase.
More details can be found in [4].

2.3 Co-occurrence Smoothing

Compared with the number of free parameters,
the number of training data is usually insufficient.
This may result in inaccurate estimation of the HMM
statistics. In practice, smoothing of the parameters
after re-estimation is essential if enough training data
are not available [5]. The co-occurrence method is
one such smoothing technique to achieve better per-
formance.

Co-occurrence smoothing is based on the formula
of computing P.,(u | v), the co-occurrence probability
of symbol u appearing given symbol v. By definition,

Zw—l 21 IZ] 1 wbw (v)P(w)

Poo(ulv) =

Zk IZw—l Zz_ Zg— a:ﬁ'bf]' k)b (U)P()

(4)
Here, W is the total number of HMM’s; N is the num-
ber of states for each HMM; M is the total number of

clusters. af%,b}(k), and P(w) are the transition prob-
ability, symbol probability, and the a priori probabil-
ity for model \,,. Peo(u | v) can be loosely interpreted
as “when symbol v is observed, how often symbol u is
observed in similar contexts”. These probabilities are
obtained from the parameters after re-estimation, ex-
cept P(w) which is usually assumed to be uniformly
distributed. By using the co-occurrence probability

P.,(u | v), smoothed parameters can be obtained as

M
=3 Poo(u | k)b (k) (5)

k=1
b(k) = A (K) + (1 — A)bi(k), O<A<1 (6)
The best X is determined empirically (0.8).

3 Recognition

Given the word image, a sequence of segment im-
ages is obtained from the result of the sub-character
segmentation algorithm proposed in {2, 4]. The com-
bination feature set described in [1] is first used to
represent each segment image as a 35-dimensional fea-
ture vector. Each feature vector is then assigned its
symbol number by the nearest-neighbor classifier with
the codebook generated during the training phase. Fi-
nally, this sequence of symbols and the associated dic-
tionary for this word are applied to the word model.
Both the HMM strategies (MD-HMM and PD-HMM)
are used in the word models. Fig. 1 shows the system
diagram.

3.1 MD-HMM Approach

Here, we need to build up an HMM for every word
in the dictionary. The word model is constructed by
cascading the character models, as shown in Fig. 2.
While the state transition (A) and symbol (B) proba-
bilities are obtained from each of the individual char-
acter models, the initial state (II) and the last state
(T) probabilities for word model can be simply as-
signed as

10 ifs;=F

= {0.0 else)
_ 1.0 if 8= L,’

v= {0.0 else ®)

Here, F; is the first state of the first character in the
word; and L; is the last state of the last character
in the word. With the given sequence of observa-
tion symbols, the best-path probability for each word
model can be computed using the Viterbi algorithm.
This probability is then normalized (all in log form)

L(w) = Py +6(w) (9)

2624

where §(w) is the weight factor for word w; and this
probability is obtained by averaging the weight factors
from every character model in this word. The word
model which leads to the highest normalized likelihood
will be chosen.

3.2 PD-HMM Approach

The word recognition algorithm for our PD-HMM
approach is based on the level-building algorithm [3].

As there is no dictionary involved in the level-
building algorithm, the output character strings may
not be meaningful, i.e., they may not be included in
the dictionary. Thus, the string match procedure as
described in [1,4] is used here as a postprocessing pro-
cedure to rank the dictionary entries. Also, we extend
the level-building algorithm to give K candidate words
instead of only one choice using the strategy similar
to the parallel version of MVA described in [1]. Our
level-building algorithm is executed as follows. Given
an observation sequence O = 0y,...,07, forall £ < T,
we need to find the probabilities for the ¢-character
strings. each of which corresponds to a f-character
path in the dictionary tree. The decision about the
output strings is made by comparing these probabil-
ities. However, an exhaustive search of all possible
paths will result in huge computations for a long ob-
servation sequence. Instead, our search is done layer
by layer. At each layer, only K nodes, which have
the K most probable paths reaching this layer, are re-
tained. The number K can be fixed or dynamically
determined according to the number of nodes in this
layer. More explicitly, let us define Bf(k) as the k-th
best probability at layer £ given observation oy,..., 0.
Thus, Bf(k) can be found recursively as

Bi(k) =k —th ,_, max Bf Y (j)P(n) Of,1)

-1<i<t—~1
1<5 XK
n € ASN()
. (10)
with the initial condition
B; (k) = k — thmax P(n | Of) (11)
n
where O denotes the observation sequence

{0u,0u+1,---,0,}, and Af(k) records the correspond-
ing node with Bf(k). Finally, A%(k) represents the
k-th best termination node for all £-character words.
Sorting these A%(-) for all possible £’s by the associ-
ated B4(-) will rank the choices for all possible strings.
The details can be found in [4].

4 Experiments

The training character images are extracted from
the 3,103 training word images (USPS Database-1V)
while the testing character images are extracted from

another 1,034 word images. Totally, 20,5129 character
images are used for training while another 6,609 char-
acter images are used for testing. After re-estimation,
smoothing and normalization, up to 80% character
recognition accuracy is achieved.

The proposed systems are further evaluated using
the 3,000 test word images. For each test word image,
two dictionaries are randomly generated with the size
of 100 and 1000 words. From Table 1, we find that the
MD-HMM approach performs much better than PD-
HMM but at the cost of much lower speed (especially
when the dictionary is large). Also, the performance
of the new HWR system is comparable to our previous
systerns [1,2] when the top few choices are considered.
Moreover, we have found that the PD-HMM version
of MLHMM has obtained near 95% recognition rate at
the top 30 choices even with a 1000-word dictionary.
Thus, the PD-HMM version of MLHMM could be a
good frontier word filter, i.e., the PDHMM based sys-
tem is first used to pick the most likely words and to
shrink the dictionary. The MDHMM based based sys-
tem is then used to reorder the recognition results for
better accuracy. This technique overcomes the slow
speed of MDHMM based system. The prototype sys-
tems described here are promising and there remains
a lot of room for improvement in terms of early use of
the dictionary and more judicious training.

References

(1] M.-Y. Chen, A. Kundu, and J. Zhou, “Off-
line handwritten word recognition using a hid-
den Markov model type stochastic network,” IEEE
Trans. Pattern Anal., Machine Intell., vol. 16,
pp. 481-496, May 1994.

[2] M.-Y. Chen, A. Kundu, and S. N. Srihari, “Uncon-
strained handwritten word recognition using con-
tinuous density variable duration hidden Markov
model,” in Proc. IEEE Int. Conference on Acoust.,
Speech, Signal Processing, vol. 5, (Minneapolis,
Minnesota), pp. 105-108, April 1993. Accepted in
[EEE Trans. on Image Processing for Publication.

[3] L. R. Rabiner, “A tutorial on hidden Markov
model and selected applications in speech recog-
nition,” IEEFE Proceedings, vol. 77, pp. 257-286,
Feb. 1989.

[4] M.-Y. Chen, Handwritten Word Recognition Using
Hidden Markov Models. PhD thesis, State Univer-
sity of New York at Buffalo, August 1993.

[5] K.-F. Lee, H-W. Hon, and R. Reddy, “An
overview of the SPHINX speech recognition sys-
tem,” IEEE Trans. Acoust., Speech, Signal Pro-
cessing, vol. 38, pp. 35-45, Jan. 1990.

2625

100-Word Dictionary
HMM Strategy | Top 1 | Top 5 | Top 20 | Top 30
MD-HMM 67.0% | 86.6% | 96.1% --%
PD-HMM 51.1% | 71.3% | 86.2% | 94.7%
1000-Word Dictionary
HMM Strategy | Top 1 | Top 5 | Top 30 | Top 100
MD-HMM 46.1% | 69.2% | 84.7% --%
PD-HMM ° | 20.6% | 42.6% | 65.8% | 94.5%

Table 1: The systems are evaluated using 3,000 postal word images with two different dictionaries.

lexicon

Y

Preprocessing word
word gt g |l E'::‘:; bl va e WordModel 1~ pypopneses
umage Segmentation

sequence of sequence of scquence
segments [featurc vectors of symbols

Figure 1: The system diagram for the MLHMM based HWR system.

Figure 2: (a) A character is modeled as an HMM with 4 states, 5 observation symbols and 7 transitions. (b) For the
‘N’ symbols

MD-HMM approach, the word models are built by cascading the character models while eliminating one

between characters.

2626

