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ABSTRACT

This paper addresses the use of H, filtering to deconvo-
lution, in particular, to the problem of image restoration.
The proposed H,, deconvolution filter has some advantages
in the image restoration such as it can deal with unknown
boundary problem and spatially varying blurs. In this pa-
per, Ho filter is compared with the inverse Wiener filter
and a regularized restoration. The experimental results
show that the H, filter deals with the unknown boundary
problem better than the Wiener filter. Compared with the
regularization method, it gives a sharper restored image,
especially, when the original image contains many details.

1. INTRODUCTION

H, filtering has attracted a great deal of attention in re-
cent years. Recently, progress has been made in the design
of Hy filters [1], [2], [3] and also in their practical appli-
cations [4]. Compared with conventional stochastic filters,
H, filters have some practical advantages. The H, fil-
tering does not require statistical information about noise,
instead, the only requirement is that the noise has bounded
energy. Therefore, it is more robust to the noise uncertainty
and also less sensitive to the uncertainty in the signal dy-
namics.

The objective of an H, filter is to guarantee the Ho,
norm of the operator from the external disturbance to the
estimate error below a prescribed bound. For an H,, de-
convolution filter, we can consider the uncertainty of the
input signal to a system and observation noise as the ex-
ternal disturbances. The deconvolution filters proposed in
[1] and [2] are for both time invariant, discrete-time and
continuous-time systems, respectively. The former is ob-
tained by a polynomial approach. This paper gives an Ho,
filter for discrete-time and time varying systems in state
space. It is obtained by an algebraic approach.

Since the usual causes of image degradation are blur and
additive noise, the specific objectives for image restoration
are to deblur and simultaneously attenuate noise. An image
has finite energy since it has a finite size and the intensity
is typically limited to the range 0-255. Therefore, we can
apply the H, filter to image restoration.
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The paper is organized as follows. First, we present
an H., deconvolution filter. Next, it is compared with the
inverse Wiener filter and regularization method in a prac-
tical image restoration example. The paper concludes with
a brief summary of advantages of the H., formulation.

Throughout the paper we shall use the following no-
tations: R™ denotes the n dimensional vector space; (.)7
denotes the transpose of a matrix; I, denotes an identity
matrix with dimension n; L3[0, N — 1] denotes the square
summable function space, e.g.,

L[0,N = 1]

{f : Ifllz < o0}

N-1 1/2
(Z fT(k)f(k)>

k=0

I£1l2

2. H, DECONVOLUTION FILTER DESIGN
Consider a discrete-time, time varying system as follows,

A(k)z(k) + Bi(k)u(k) + Ba(k)w(k), z(0) = zo
C(k)z(k) + D1(k)u(k) + Dz (k)w(k) (1)

z(k+1)
y(k)

where k € [0, N — 1] is an integer index; £ € R" is the state;
u € R™ is the input; y € R? is the measurement, w € R?
is the noise, and zo € R" is the initial state of the system.
The matrices A(k), Bi(k), Ba2(k), C(k),D1(k) and D.(k)
are bounded functions of k with proper dimensions.

We assume D; (k) # 0 for all k € {0, N—1]. And suppose
that the input u consists of two parts:

]

u(k) = uo(k) + uu (k) (2
where up is the known part and u, is the unknown part.
We also assume that u, and w have finite energy over the
interval [0, N — 1}, e.g., ua, w € L2[0, N — 1].

A general, n-th order causal deconvolution filter may be
expressed as follows,

E(k+1) A(k)2(k) + Bi(k)uo(k) + Ba(k)y(k)
(k) = C(k)a(k) + Di(k)uo(k) + Da(k)y(k) (3)
where £ € R" is the filter state; & € R™ is the filter’s output
which is the estimate of u; A(k), By(k), B2(k), C(k), D1 (k)

and D (k) are the filter parameters to be determined.
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The deconvolution filter should be designed to minimize
the estimate error e(k) = d(k) — w(k). Therefore, the ob-
jectives for a suboptimal deconvolution filter should be as
follows,

llw — 43 2

sup <7 (9
wnwEL[0,N—1],z0 €r™ ||ull3 + [|w]l3 + 2§ Szo

for zo unknown or

fle — 13 2
sup e (5)
weweLa(o,n-1] llull3 + [lwl3
for zo known, where « is a prespecified positive number and
S is a positive-definite matrix .
We can prove that the suboptimal filter satisfying (4)
or (5) should be as follows,

A(k) = A(k)— Ba(k)C(k)

Bi(k) = Bi(k)— Ba(k)Di(k)

By(k) = (A(k)Q(k)CT(k)+ B(k)D"(k))R™ (k)
C(k) = -Di(k)R'(k)C(k) (8)
Di(k) = I-DF(k)R'(k)D:(k)

Di(k) = DF(RR™(k)

where

B(k) = [Bu(k) Ba(k)]
D(k) = [Di(k) Da(k)]
R(E) = C(R)QK)CT(k)+ D(k)D? (k)

if there exists a symmetric solution Q(k) to the following
Riccati equation:

Q(k + 1) = A(K)Q(R)AT (k) + B(k)T;™ B (k)
—(A(k)Q(E)CT (k) + B(k)T D (k)) (M

T (k)(C(k)Q(k)AT (k) + D(k)T BT(k))
with Q(0) = S~ for objective (4) or Q(0) = 0 for objective

(5), where Ti and T3(k), k € [0, N — 1], are both positive-
definite matrices:

T, = (Imiq—72LTL)
Ta(k) = D(k)T, DT (k) + C(k)Q(E)CT (k)
L = [I. 0]

The proof is omitted since it is too lengthy to be con-
tained in this paper.

Here we can see that v has to be greater than 1 because
the condition T1(k) > 0 has to be satisfied. Based on the
filter formulation described above, the deconvolution pro-
cess can be repeated in order to improve the estimation
iteratively. For the initial estimation, u, may just be set
as zero if we do not have any knowledge about the input
signal. Then, for the latter iteration, we can use the previ-
ous estimate i as uo to improve the estimate based on the
previous estimation.
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Figure 2: Restoration results by H filter

When the initial condition z¢ is known and there is no
noise in the system, the inverse filter in time domain can
be recovered from the H, filter above by setting Bz(k) and
Dy (k) to zero matrices if D;(k) is square and invertible for
k € [0, N — 1]. In this case, the estimate 4 is exactly the
same as the input signal u without any error.

3. PRELIMINARY RESULTS

For the comparison of Wiener filter and H, filter, one row
of an image with 500 pixels wide blurred by 9 taps horizon-
tal uniform motion is used as a 1-D example. The estimate
by Wiener filter is also 500 pixels wide. Figure 1 shows that
there are ringing distortions near the boundaries, especially
the right boundary, because of the unknown boundary prob-
lem as mentioned in [5].

To reduce the boundary effects, first, two causal state-
space models are obtained from the blurring function for
two space reference directions, from left to right (forward)
and from right to left (backward). Zero is used as the
boundary condition of the model for the forward direction.
Based on the estimate obtained in the forward direction, we
can get the boundary condition for the model in the back-
ward direction. The boundary estimate for the forward
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model obtained from the backward estimation is of closer
to the true boundary values than the initial guess, zero.
Repeating the process, we can improve the estimate of the
boundary. In this way, not only is the unknown boundary
problem addressed but we can also estimate all the pixels of
the original image. The results in Figure 2 demonstrate that
the unknown boundary effect is eliminated and the estima-
tion gives the greylevels of all 508 pixels that contributed
to the blur. )

We use the pepper image as an example of comparing
H, filter and regularization method. The degraded image
shown in Figure 4 is one section with the size 256x256 of
the 512x512 original image blurred by an 11 pixel uniform
horizontal motion and added noise at 30dB BSNR. The
256x 256 portion of the original image corresponding to the
extracted block of the blurred image is shown in Figure 3.

The restored image by regularization method is shown
in Figure 5. The image was restored by using a conjugate-
gradients iterative technique to obtain a regularized restora-
tion [6]. The problem of unknown boundary values was han-
dled by restoring the boundary pixels along with the rest of
the image. Space-invariant regularization was used with a
Laplacian regularization operator and a regularization pa-
rameter chosen to minimize the MSE of the restoration.
The Laplacian serves as an approximate whitening filter,
which makes this restoration approximate a Wiener filter
[7].

The image restored by Ho filter is shown in Figure 6.
For the H, deconvolution filter design, we need the state
space models in two directions (from left to right and the
converse) for the blurring function for thell pixel horizontal
uniform motion. Since the blurring function is symmetric
over the horizontal axis, the models for two directions are
the same:
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B; = 01051, D1 =1/11

D3 is a free scalar parameter. We can choose its values
according to the intensity of noise. D, is set as zero if
there in no noise. Its value should be increased as the noise
intensity going up.. For the choice of matrix S, it should
be selected as a small positive-definite matrix if we want to
reduce the effect of the unknown boundary on the estimate.
In this experiment, we chose D2 and S as 0.15 and 0.01],,
respectively.

Figure 7 gives the mean square errors of the restored im-
ages restored by H, filter and regularization method com-
pared with the original image for each row. It shows that
the regularization method works better than the H, filter
at the smooth area, especially at the lower part of the image.
The latter restored the central part better where the image
contains more details. The MSEs in Figure 7 also shows
that the Hy filter performs consistently for the whole im-
age which has low frequency components at top and lower
rows and high frequency components at central rows. The
experiment results show that the Ho, filter works better
for high detail images and conversely, the performance of
regularization method is better for smooth images.

4. COMMENTS AND CONCLUSIONS

If the observed data sequence is infinite in extent, the effect
of boundary condition decays to zero by using the H, filter.
However, when the data sequence is finite in extent as is the
case in image processing, boundary effects can be quite sig-
nificant. Applying the H filter to the same data sequence
back and forth repeatedly can reduce the boundary effects
significantly. The results above show that the H, filter can
outperform the Wiener filter in image restoration with un-
known boundary conditions. Compared with regularization
method, H, filter works better for images with many de-
tails. It performs consistently for both smooth and rough
sections of the image for the test. Furthermore the Ho
filter does not need signal and noise models. Another ad-
vantage of the H, filter is that it can be applied to the same
data sequence repeatedly to improve the estimate accuracy
by using the last estimate as u; while its initial values can
simply be set as zeros. Finally, this filter can be used for
linear shift varying processing of images.
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Figure 3: The original image 256 by 256
Figure 5: The restored image by regularization method

Figure 4: The blurred and noisy image

Figure 6: The restored image by Hoo filter
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Figure 7: The performance comparison
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