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ABSTRACT

This paper presents shift-adaptive blind image restoration
algorithms which can deal with realistic shift-variant blurs
and which integrate the usually separate tasks of blur iden-
tification and image restoration. The key to success is the
effective utilization of the piecewise smoothness of both the
image and the PSF to compensate for the severe lack of in-
formation in this type of problems. This is achieved through
regularization of the image and the PSF by anisotropic dif-
fusion which has the property that smoothing is allowed
only in the direction of edges.

1. INTRODUCTION

A fundamental issue in image restoration is blur removal
in the presence of observation noise. This problem is usu-
ally addressed under the assumption that the underlying
blur operation is shift-invariant. Since real-world blurs are
often shift-variant, there is a need for adaptive restoration
algorithms which can handle these types of blurs.

Several methods have been forwarded to handle the
problem of restoration under the assumption that the un-
derlying shift-variant blur is exactly known. They include
coordinate transform [6], sectional processing [9], iterative
methods [7], 2-D Kalman filtering [8], and POCS [5]. Since
the blur operation is most likely unknown in practice, a
more realistic and challenging problem is restoration under
the condition that the shift-variant blur operation is un-
known and is posed as a function (point spread function
(PSF)) to be identified either initially or as an integral part
of the restoration procedure.

The literature has recorded few works on the identifica-
tion of shift-variant blurs. In [1], a sliding-block approach
based on Kalman filtering is proposed to adaptively iden-
tify shift-variant blurs. It assumes that the point spread
function (PSF) within a small block (subimage) can be
considered as shift-invariant. So a Kalman filtering algo-
rithm previously developed to identify shift-invariant blurs
can be used to identify this PSF. By overlapping subse-
quent subimages, the results obtained at one subimage can
be used to initialize the identification process in the next
subimage. In [3], the sliding-block idea is followed but an

This work was supported by the BMDO/IST program man-
aged by the Office of Naval Research under Contract N0O0014-92-
J-1911

2607

expectation maximization (EM) algorithm previously de-
veloped to identify shift-invariant blurs is proposed to re-
place the Kalman filtering in each of such subimages. In [4],
a multi-resolution approach based on local Fourier trans-
form is proposed for blur identification. Since this method
employs a Fourier analysis window which slides across the
image, it may still be regarded as the sliding-block approach
where an earlier technique which focuses on inherent regular
zero patterns in the image spectrum is employed to identify
the shift-invariant blur in each of the subimages. In order
for these sliding-block based approaches to succeed, it is
necessary that the underlying PSF be spatially stationary
so that the PSF is approximately spatially invariant in each
of the subimages. Unfortunately, this is usually not true for
many photographically blurred images. Examples include
motion blur when objects move against the background and
the camera, and out-of-focus blur when the scene has depth.
If the objects are solid with sharp edges, the PSF will un-
dergo sharp transitions around the edges though it will be
smooth in the rest of the image.

This paper presents shift-adaptive blind restoration al-
gorithms which can account for this type of sharp PSF tran-
sitions. Specifically, the simple and efficient regularization
approach to joint blur identification and image restoration
forwarded in [10, 11] is successfully extended to dealing with
shift-variant blurs. The key to success is the effective uti-
lization of the piecewise smoothness of both image and PSF
to compensate for the severe lack of information in this type
of problems. This is achieved through regularization of the
image and PSF by anisotropic diffusion which has the prop-
erty that both the image and PSF are smoothed only in the
direction of edges.

2. A GENERAL FORMALISM

A linear, shift-variantly degraded image may be modeled as

9(z,y) = /D d(z,y;s,t)f(z — s,y — t)dsdt
+n(z,y), (z,¥) €D, (1)

where f(r,v), g(z,y), d(z,¥; 3, ), and n(z, y) represent the
original image, observed image, PSF, and observation noise,
respectively. The task of blind image restoration is to re-
store the original image f(z,y) given only the observed
image g(z,y). This is equivalent to the decomposition of
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g(z,y) in the presence of noise. Even when the blur op-
eration is shift-invariant, this decomposition is not unique
[10, 11]. With a shift-variant PSF, this problem may be
more serious. In addition, this estimation problem also suf-
fers from the usual ill-conditioning associated with decon-
volution.

In order for the restoration effort to succeed, appro-
priate properties of both the image and the PSF have to
be fully exploited. The most prominent of them is the
well-known piecewise smoothness of image inteusity f(z,y).
This property is known to be critical to the well-conditioning
of regularization methods in image restoration. The PSF
d(z,y;s,t) may also be assumed to be piecewise smooth.
As we noted in the introduction, the PSF undergoes sharp
transitions with respect to (z,y) coordinates only where
there is an edge (though an edge does not necessarily lead
to a sharp PSF transition), and it is smooth otherwise. Of
course, in the case of shift-invariant blurs, the PSF is con-
stant with respect to (z,y): d(z,y;s,t) = d(s,t). The PSF
may be piecewise smooth with respect to the (s, t) coordi-
nates. Such is the case for shift-variant motion blur and
out-of-focus blur.

The piecewise smoothness property of the image is usu-
ally incorporated into the restoration operation in the form
of weighted smoothing (shift-adaptive regularization) [2, 10,
11). The basic idea behind this is that more smoothing is
applied where the image is smooth and less where the image
has sharp intensity transition. . This, to some extent, pre-
serves image edges while the restoration operation is prop-
erly regularized. But a little thought indicates that this
approach is not enough to preserve image edges because
the smoothing operation is indiscriminate with respect to
the direction of edges in the sense that it smoothes both
along and across the edges. Image edges would be better
preserved if the smoothing operation is allowed only along
the edges and inhibited across the edges. This objective,
as well as the weighted smoothing, is very well achieved
by anisotropic diffusion {12, 13]. Similarly, the piecewise
smoothness property of the PSF can also be well incorpo-
rated into the identification process through anisotropic dif-
fusion. Therefore, we propose to solve the blind restoration
problem by minimizing the following functional

L, f) = / Ale(z,v))dzdy
9]
x| B(|Vf(x, dzd
+‘/n (IVf(z,v)l) dedy

+7// C(IV&(:,y;s,t)Ddsdtdzdy (2)
aJD

subject to the following constraints:

d(z,y;8.t) 20, (z,9) € Q,(s,t) €D, (3)
/D d(z,y;8,t)dsdt = 1, (z,9) € Q, (4)

and .
a< f(z,y) <b, (z,y) €C (5)

The ez, y) in the first term of (2) is the restoration residual:

e(zyy) = g(zw y) - /D (I(I,y;s,t)f(z -8y - t)d‘gdty (6)

which represents the fidelity of the estimate d and f to
the observation g(z). The A(-) in this term is usually a
quadratic function: A(e(z,y)) = ¢*(z,y). However, since
it has been observed that a quadratic function would lead
to ringing artifacts [2], a different function may be used to
reduce such artifacts. Since the residue e(z,y) tends to be
large around edges and small in smooth areas, more restora-
tion is needed around edges than in smooth areas. This may
be achieved by a function A(-) such as A(e(z,y)) = e*(z,y),
which increases faster than the quadratic function. Direct
minimization of the first term would lead to excessive noise
magnification due to the ill-conditioning of the problem,
so two piecewise smoothness constraints (second and third
terms) are imposed. The [V #(z,y)| in the second term of
(2) represents the magnitude of the image gradient at (z,y)
and the B(.) is an increasing function, so the the minimiza-
tion of this term represents a decrease in image gradient,
that is, it is a smoothing operation. It is proved in [12, 13]
that the minimization of this term leads to anisotropic dif-
fusion, and that if the function B(-) is properly designed,
the diffusion operation can progress in such a way that the
image is smoothed only in the direction of edges and the
directional smoothing operation is encouraged at large in-
tensity transitions and discouraged in smooth areas. The
minimization of C|Vd(z,y;s,t)| in the third term of (2)
plays a similar role for the PSF. The A and 7 are the reg-
ularization parameters which control the trade-off between
fidelity to the observation and smoothness of the estimates
d and f. The first and second constraints (3) and (4) sim-
ply state the facts that the image intensities involved are
non-negative and an imaging system normally neither ab-
sorbs nor generates energy. The third constraint (4) merely
states that the image intensities involved are within a cer-
tain range [a,b].

Note that the cost functional (2) is obviously not con-
vex, so our blind restoration effort suffers from the prob-
lems associated with local minima. in addition to the un-
resolved non-uniqueness problem of blind deconvolution.
When L(d, f) is practically minimized, a particular sup-
port for ci(z,y; s,t) has to be specified, and its support D
for the (s,t) coordinates is usually small compared with the
image support 2, reflecting the fact that blurring is usually
a local operation. This is an important condition imposed
on d(z,v; s,t) which might significantly reduce the number
of possible decompositions as well as local minima. The
constraints (3), (4), and (5) may also serve this purpose.

3. ALTERNATING MINIMIZATION

In order to minimize the functional (2), we need to obtain
its gradients with respect to d and f. The gradient of (2)
with respect to f may be obtained as

VjL(ci,f) = -—/A'(e(u,v))(f(u,v;u—z,v——y)dudv
Q
. (B(ViDg;
—dw( 77 Vf). (M)

The first term in (7) corresponds to the gradient with re-
spect to f of the first term in (2), its derivation involves
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some work of Giteaux variation and is not included here
due to space limitation. The second term in (7} corresponds
to the gradient with respect to f of the second term in (2),
its derivation was presented in [12, 13]. Similarly, we give
the gradient of (2) with respect to d as

Vild,f) = -A'e(z ) f(z~uy-v)
—div (C—“V-‘-IDW) (8)
IVd]

where the first and second terms correspond to the gradients
with respect to d of the first and third terms in (2). Similar
to steepest descent, the functional (2) may be minimized
by moving d and f in their respective negative gradient
directions with time:

of _ -
A= v1dp, ©
%% = —v,L3d, ). (10)

Note that the discretization of (9) and (10} leads to the
conventional steepest descent. Since d and f are in different
scales and so are their gradients, it is impossible to find a
common time step size which is optimal (in the sense of fast
convergence and stability) for both of (9) and (10). Instead,
we follow the idea of alternating minimization [10, 11] stated
as follows. We initialize d to random numbers satisfying the
constraints (3) and (4) and f to the observed image g. We
first partially solve (9) to obtain an estimate of f. Based on
this estimate of f we then partially solve (10) to obtain an
estimate of d. We repeat this procedure until satisfactory
estimates of d and f are obtained. In its simplest form, each
step of the alternating minimization procedure may consist
of merely one time step forward of (3) and (4), respectively,
though more sophisticated methods may be used.

4. PARAMETERIZED BLURS

Since the number of unknowns in d and f is far greater than
the observed data g, it is unlikely that, in general, a satisfac-
tory solution to the blind restoration problem can be found.
An alternative is to construct a simple PSF model and pa-
rameterize the PSF to reduce the number of unknowns. Due
to the simplification of the parameterized PSF model, the
restoration quality may not be satisfactory. In case of this,
the general method proposed in last section may be used
to fine-tune the restoration. Motion blur and out-of-focus
blur may be easily parameterized, but we only present the
identification of parameterized motion blur due to space
limitation.

The PSF of a shift-variant motion blur may be param-
eterized by u(z,y) and v(z,y) which denote the horizontal
and vertical motion components at a location (z,y):

I s=0u,t=0v,0<0<1;
d(z,g;0,t) =] Vei+o?

0, otherwize.
(11)

Then the functional (2) takes the following form
L(@,d, f) = / Ale(z,y))dzdy
Q
+/\‘/r2 B (]Vf(z,y)D dzdy
7. /n Cu (IVilz, ) dady
+7.,AC., (|Vi(z,y)|) dzdy. (12)

It is obvious that its gradient with respect to fis still given
by (7) and the descent equation (9) still holds. The gra-
dients of (12) with respect to i(z,y) and o(z,y) may be

obtained as |

ViL(3,9,f) = _L(;@_)_

. [f(z:—ﬁ,y—ﬁ) —/ f(z—aﬁ,y—ﬂﬁ)da]

- (CL(IVa])
~div <——|V I Vi ) (13)
VoL(a, 4, f) = _i_(_‘%ﬂ.
1
. [f(z -,y —9) — / flz -6,y — Oﬁ)dO]
—div (———C’l('lvlu Dy ) : (14)
and the PSF descent equation {10) takes the form of
o . oa
5 = Val(d . f) (15)
a0 :
5; =~ Vel(d, 0, f). (16)

5. NUMERICAL SIMULATION

The three discs in Fig. 1(a) are subjected to horizontal mo-~
tion blur (v = 0) with » = 5 for the largest disc, u = 8 for
the middle disc, and u = 10 for the smallest disc. Gaussian
noise is then added to the blurred image at SN R = 30 dB.
The degraded image is shown in Fig. 1(b). Fig. 1(c) is the
image restored by the parameterized algorithm developed
in last section with A(z) = 2° and Cu(z) = z. The regu-
larization parameters used are 0.5 and 50 for the image and
the PSF, respectively. The time step for the image is 1 and
that for the PSF is 0.001.

6. CONCLUSION

This paper presented shift-adaptive blind image restoration
algorithms which integrate the usually separate tasks of
shift-variant blur identification and image restoration. This
is achieved through the regularization of the image and the
PSF by anisotropic diffusion which has the property that
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(c)

smoothing is allowed only in the direction of edges. As
with other regularization methods, the estimation of op-
timal regularization parameter is an open problem. The
proposed method also suffers from the problems associated
with local minima and the uniqueness issues of blind decon-
volution.

(1]

]

(10]

(11}

(12]

Figure 1: (a) Original image. (b) Image degraded by shift- (13]
variant horizontal motion blur and white Gaussian noise at

30 dB SNR. {(c) Restored image.
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