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ABSTRACT

This paper advances a novel and relatively simple scheme
for designing two-dimensional (2-D) filters with zero
phase. The proposed filters are obtained by a nonlinear
mapping of a one-dimensional (1-D) magnitude response
into a 2-D filter. By appropriately constraining the filter
parameters, a wide variety of passband iso-contour shapes
can be generated in the frequency-frequency plane, e.g.,
tilted or untilted ellipses, circles, diamonds, parallel strips
at arbitrary angles, crosses, and “snowflakes”. Simple
equations for designing the filter’s parameters that meet
or exceed user specifications are given for the special
cases when the 1-D prototype is the magnitude response of
a Gaussian, Butterworth, Chebyshev, or inverse
Chebyshev filter. A scheme for designing fan filters with
arbitrary angle is also provided.

1. MULTIFORM, TILTABLE LOWPASS FILTERS

We propose the following frequency responses for the two-
dimensional multiform, tiltable (MT) Gaussian lowpass
filter MTGLF)

HMTGLF(f,V)=eXP{‘“[ (%—vv,rﬁv)ﬂ (1)

the MT Butterworth lowpass filter (MTBLF)

-1

HMTBLF(f,V)={1+[P ( L3, v]]k} . ®

the MT Chebyshev lowpass filter (MTCLF)

-1
Hyrelr(f,v) = {“K Cx[“(f vy "B YII} ,» @

and the MT inverse Chebyshev lowpass filter (MTICLF)
-1
Hymewe(/f>v) = {“Kpciz[u_l(fio,;%;r, ﬁd)]} @

where

w(F, 5 By)= 12+ +2r[(f0)”]7. 5)
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The "design" parameters of these filters are a positive
power A used to control the transition region width, two
positive frequency scaling constants f; and vo used to
control the passband edge, a tilt or rotation parameter r
usually in the range » € [-1,1], and B and y which are
powers coupled in such a way that either (B,y) = (1,1), for
causing no change, or (B,y) = (2,'4), for producing the
magnitude of the product term f¥. Cs(-) denotes the
=(1-k,)/k,
where k, is the minimum amplitude of the filter allowed in
the passband, and K =(1-k;)/k; where k, is the
maximum amplitude of the filter allowed in the stopband.
These 2-D filters satisfy many of the properties of the
corresponding 1-D prototype counterparts. For example,
the MTCLF has an equi-ripple passband that is bound
between unity and the user specified &,.

The first advantage of the proposed filters is their
ability to generate arbitrarily narrow transition regions
and at least six passband support regions by properly
choosing combinations of the ﬁlter parameters: parallel
strips at arbitrary angles (r = 1, B=y =1), crosses
(r=-1, =2 v=1%), “snowﬂakes” r <-1, p=2,

=), untilted ellipses (r = 0), tilted ellipses (-1 <r <1,
B=y =1), and diamonds (r =1, =2, y="). SeeFigs. 1
and 2. They extend the filters in {1,2]. The filters in [1]
are restricted to circular or rectangular passband regions,
and those in [2] are restricted to fan, diamond, and
untilted elliptical filters.

The second advantage of the new filters is that we
derive simple, easy to use, closed form design equations to
select filter parameters that meet or exceed a given set of
user specified passband and stopband design criteria in the
frequency-frequency (f~v) plane. They provide an “easy to
design” alternative to the (Chebyshev) McClellan
transformation filters [3,5].

Thirdly, by construction, these versatile filters have
zero phase. Consequently, they should prove useful in
image processing applications [4,5].

Chebyshev polynomial of order A, X,
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2. MT LOWPASS FILTER PARAMETER DESIGN

The parameter design equations for the four lowpass
filters advanced in (1)-(4) are summarized in Tables 1 and
2. It is assumed that the passband region must have filter
values greater than or equal to k, whereas the stopband
region has filter values less than or equal to k,. All the
user needs to provide is ,, k,, the desired passband shape,

. N, .
and a set of N, 2 2 passband points, {(/; VB, )}x=1 , which
must lie in the passband, i.e., it is desired that
HMT(fpi:Vpi)?-kp’ and a set of N,>1 stopband

NI‘

points, {( f50Vs, )}H, which must lie in the stopband, i.e.,
it is desired that HMT( fsi,vsi)sks. From these user

parameters, a relatively fast computer algorithm
determines the filter parameters A, vo, and fy which meet
or exceed the user specifications. The algorithm works as
follows. Since the iso-contours of the filters in (1)-(4),
ie., Hyr(f,v)=k;, occur along concentric ellipses or
diamonds or parallel strips or crosses, the filter design
algorithm searches for elliptical or linear boundaries to
the given set of passband and stopband points and uses the
parameters defining these boundaries to solve for the
unknown filter parameters. For example, when » = 0, the
algorithm fits an ellipse, v? =mf 2 +b, to each pair of
given passband points (fPi’VP;)’ i=L---,N,, and

searches for the outermost or “critical” such passband
ellipse that has all given passband points inside it or on it.
Concentric, i.e., equal curvature m to the passband ellipse,
ellipses are then fit through each stopband ellipse and a
search is made for the critical stopband ellipse that has all
given stopband points outside or on it. Table 1 lists the
equations for the unique curvature and intercepts used to
define these critical ellipses,  The unknown filter
parameters A, vo, and f;, are given in Table 2 which set
Hyr(f,v)=k, along the critical passband ellipse and

Hyt(f,v) =k, along the critical stopband ellipse. The
derivations can be found in [6,7].

3. MT NON-LOWPASS FILTERS

The frequency responses of the Gaussian and Butterworth
filters in (1)-(2) are always monotonically decreasing
away from the origin of the frequency-frequency plane.
Hence, using either of these 2-D lowpass filter responses,
it is relatively straightforward to design other types of 2-D
filters. See Fig. 3. Let Hyp ( 7, v) denote a lowpass filter.

Then, a highpass filter can be generated as [4]

Hyp(f,v)=1-Hyp (f.V). ©

A bandpass filter can be generated as [4]
Hygp(f,v) = Hyp, (f,V) - Hig (/) M
where Hyp (f,v) has a higher “volume”, ie., cutoff
boundary, than Hip(f,v). A bandstop filter can be

created from a highpass and a lowpass filter as [4]

Hpgs(f.v)= Hup(f.v)+ Hyp (/. V). ®
Also, a fan filter can easily be obtained through a phase
shift transformation of a lowpass diamond filter. See Fig.
3(d). This transformation is basically the inverse of the
mapping employed in [2] to obtain a full-plane diamond
filter from a +45° fan filter. Moreover, since our design
scheme permits arbitrary angles for the linear boundaries
of the diamond, the resulting fan filters also have arbitrary
angle.

4. GENERALIZATION/EXTENSION

There are other interesting extensions to the formulation
presented in this paper. For example, any of the
multiform, tiltable filters mentioned can be easily
extended by re-defining the nonlinear mapping in (5) as

u(f,%ap,00,03,04,7,,7) =

(7)) (72 (@) o]
With this new formulation, it is possible to generate filters
with iso-contours that look like hyperbolas and rectangles
(see Fig. 4), etc., as well as the shapes mentioned above.
Moreover, it is possible to get filters which are constant
along one or both of the frequency axes. Such filters are
useful in designing mixed time-frequency representations
[6,7].

®

5. CONCLUSIONS

We have proposed versatile 2-D filters capable of attaining
many possible passband support “shapes”, including
ellipses (tilted and untilted), parallel strips, crosses,
diamonds, “snowflakes”, rectangles, and hyperbolas. For
given passband and stopband constraints, we developed
closed form design equations for computing the filter
parameters which meet or exceed user specified
passband/stopband criteria. In contrast to the McClellan
transformation filters [3,5], the new filters have stopband
iso-contours identical in shape to those of the passband
and have design equations that are simple to use for all
shapes.

REFERENCES

[1] M. Ahmadi and A. Chottera, “An improved method for the
design of 2-D FIR digital filters with circular and rectangular

2604



cut-off boundary using Kaiser window,” Can. Electron. Eng.
J., vol. 8, pp. 3-8, 1983.

[2] Q. Guand M. N. S. Swamy, “On the design of a broad class
of 2-D recursive digital filters with fan, diamond and
elliptically-symmetric responses,” [EEE Trans. Circuits and
Systems, vol. 41, pp. 603-614, 1994.

[3] R. M. Mersereau, W. F. G. Mecklenbrauker, and T. F.
Quatieri, Jr., “McClellan transformations for two-
dimensional digital filtering: I - Design,” IEEE Trans.
Circuits and Systems, vol. 23, pp. 405-414, 1976.

[4] W-S Lu and A. Antoniou, Two-Dimensional Digital Filters.
New York, NY: Marcel Dekker, Inc., 1992.

(5] J. S. Lim, Two-Dimensional Signal and Image Processing.
Englewood Cliffs, NJ: Prentice-Hall, 1990. ]

[6]A. H. Costa, Multiform, Tiltable Time-Frequency
Representations and Masked Auto Wigner Distribution
Synthesis. Ph.D. dissertation, University of Rhode Island,
Kingston, RI, 1994.

[71 A. H. Costa and G. F. Boudreaux-Bartels, “Design of time-
frequency representations using multiform, tiltable kemels,”
Proc. IEEE International Symposium on  Time-

Frequency/Time-Scale Analysis, pp. 205-208, 1994.

p=3
-

o
~

|
o
~

Nif)rmahzed Frequency, v

: N o
-/ L
K
0 /N

-05 -04 -03 -02 -01 O 01 02 05 04

Normalized Frequency, f

Figure 1: 50% iso-contours in the f~v plane demonstrating
some of the possible passband support regions (snowflake,
circular, diamond, and elliptical (tilted)) for the MT
lowpass filters.
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Figure 2: Multiform, tiltable lowpass filters. (a)-(d) MT Butterworth filter with elliptical (untilted or tilted), circular, and
diamond shaped, respectively, passband/stopband regions; (¢) MT Chebyshev filter; (f) MT inverse Chebyshev filter. In

(e)-(f), the passband/stopband error has been chosen relatively large to emphasize where the rip

ple occurs; both filters

have the same order. In all mesh plots in this paper, the origin of the f~v plane is in the center. The amplitude is plotted

using a linear scale between zero and one.
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MT Iso-Contouri] Intermediate Design Parameters || Constraints
Shape m by by Bl
2 2
: Vv, -V
Untited | Yom =V |2 2 2 _mgz|
Ellipse Sop = 1 -
Parallel Strip {| v, -V 111711
Cross A Ve ~Mep | Vs —M| -1 | 2 | 4
. f - f 1
Diamond gy~ Jep +1 |2 ]%
Table 1: Design equations for the intermediate parameters for the

multiform, tiltable (MT) filters
passband points used to form the outermost or critical passband curve

: (f‘71’v°Pp)’

i = 1,2 are the two

while (f,v,s) is the stopband point used to form the critical
stopband curve. These equations hold for all the MT filters in (1)-(4).
Multiform, Tiltable (MT) Filter Design Parameters
MT Filter Form A Vo Jo
Untilted Ellipse: . =
MTGLF ! g( ) [21 g( )] (=5
J 5 B
MTBLF log(K , / K [21 og(b, /b, )] Sk, ® =
MTCLF cosh™( JK, 7K, )/ cosh™ [(b, 8,)] Jb
MTICLF Jb
Parallel Strip, nk » =
Cross, Diamond] los(gf)/[ﬂ g(b—')] ”p(flfi“)
MTGLF ' ’ ’
MTBLF ! g(Kp/K,)/[u g(bp/b,)] bP(KP)"k )
MTCLE  eosh™!(JK; 7K, )/ o h“[(b /bp)z] by
MTICLF b,

Table 2: Design e quatxnsf r the parameters of the MT lowpass

filters in (1)-(4) using m, b,, b

Kp

=(1-k,)/kp, Ks=(1- k,)/ks, where k, is

r, B, and ¥ listed in Table 1.
the minimum

Figure 4: (a) MT Gaussian lowpass rec
Gaussian lowpass hyperbolic filter genera

tangular filter and (b) MT
ted using the mapping in

(9). See [6] for derivation of design equations when o, = oy = 1 and

oy = O3,
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Figure 3: (a)
highpass filter. (b)) MT Butterworth, elliptical
bandpass filter. (c) MT Butterworth, diamond
bandstop filter. (d) MT Butterworth, fan filter.



