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ABSTRACT

Any imaging system has to deal with the problem of
degradation of images due to blurring and noise. In
this paper, we consider the problem of blur identifi-
cation, in the presence of noise. We use a stochastic
model for the blur matrix. Then, we use the mean
field approximation technique which enables us to ob-
tain a closed-form expression for the mean values of the
blur elements. This technique is proven to be versatile
enough to handle wide varieties of blur matrices. Sim-
ulation results for estimation of the blur matrix using
this formulation have also been presented.

1. INTRODUCTION

The degradation processes of blurring and noise acting
on an image are modelled as follows

Yii) = D Dmm)Blomi-m) 1G5 (1)
(m,n)ewW

where z(; ;) and y(; j) denote the elements of the orig-
inal image X and the distorted image Y respectively,
defined on the square M x M lattice I, by n) repre-
sents the blurring process and W the blur window and
n(;,j) represents the additive all-white Gaussian noise.
The elements by, ) constitute the blur matrix or the
point spread function (PSF) B. The PSF estimation
problem [1] involves identification of the blur matrix,
given knowledge about X and Y.

Techniques used for estimation of the PSF have gen-
erally concentrated on the use of suitable models for
the original image X. These include the Maximum-
Likelihood estimate, which used the Expectation Max-
imization algorithm {2]-[5]. The Generalized Cross Val-
idation (GCV) approach has been used by Reeves and
Mersereau [6] to obtain the PSF. Chalmond [7] has used
a multiresolution approach combined with a Markov
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Random Field (MRF) model to obtain an estimate of
the PSF.

In this paper, we outline a direct approach to the
estimation of blur using an appropriate model for the
blur itself. The blur elements are modeled as contin-
uous valued random variables using an MRF model.
This model helps us to develop an energy formulation
that is versatile enough to handle many kinds of blur
functions. Thus, we can dispense with regulations on
“smoothness” of the blur matrix.

2. BLUR MODEL

We assume a continuous Gibbsian energy distribution
for the blur matrix B i.e. it’s a priori probability den-
sity function is given by

fa(b) =  exp(~U(b)/T) e

where b is the lexicographically ordered column vector
of blur elements, U(b) is the Gibbs energy, T is the
temperature and Z is the a priori partition function.
The a posteriori partition function Z, is given by
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where z and y are the lexicographically ordered column
vectors corresponding to X and Y respectively. The
integral above is of order N2 for an N x N blur window.
¢ is the regularization parameter and 8 = 1/7T.

The energy function U(b) can be tailored to meet
the demands of different varieties of blur matrices, as
is shown below.

If we can evaluate the integral in (3), we can obtain
closed form expressions for the mean values of the blur
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elements, since

o d

- B Ty = - —2 (2
Y(.5) (m.%:ew (m,n)T(i—m,3—n) 3z, dy(i,j)( »)
) (4)
where b(m, 5 is the mean value of the random variable

b(m,n).

However, the integral in (3) is, in general, too com-
plicated to evaluate, due to the dependence of the inte-
grand on the neighbourhood of b(; ;). To simplify this
dependence, we resort to mean field theory [8]-[10].

3. THE MEAN FIELD APPROXIMATION

The mean field approximation was originally used to
solve the many-spin problem in thermodynamics. The
complex effect of spins of neighbouring bodies on the
spin of the body under consideration was simplified us-
ing this technique. In an analogous manner, we use the
mean field approximation by assuming that the random
variables associated with neighbourhood blur- element
values can be replaced by their means.
We present two examples. If

> (g = bai-1)® + (B = b))’
(3,7)eW

+ (beigy — bi=1))* + (¥Gi.g) = biir1,5)* (5)

U(b) =

along with (3), this yields

B
Zp = eXP(—Zﬁ Z y(zi,j))x

(i,7)el
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where

Z Y6, T(i—-m,j—n)
(i,J)€l

Pimn) =

Um,nipg) = Z Z(i—m,j—n)T(i—p.j—q)
(i,j)el

U = Ugn,nip,q) and W is the blur window W excluding
the pixel location (m,n).

Thus, using the mean field technique, we have con-
verted an integral of order N2 into N? integrals of order

1. Evaluating the integral in (6) and using (4), we have
1 1

I_)(m,n) m[g(})(m’n) _
Z_B(P,q)U(m,n;p,q))
(p)ew
+2(B(mm) + Bm-1,m)]  (7)
Similary, if

> [bimm) = bimn-1)lB(m ) = bim-1,m)]
(m,n)eEW

Ua(b) =

+ [b(m,n) - b(m,n—l)][b(m,n) - b(m—l,n-—l)]
+ [bem,n) = bm—1,n)]{B(m,n) = bm—1,n—1))

this yields
1
3u+ -2—515

Z E(qu) U(m,n;p,q))
(p.9)EW

+ G#R(Tnm)] (8)

_ 1
b(m,n) [ﬁ(P(m,n) -

where

_ - - - 1
Kimn) = bm-1,n) + bmn-1) + bm-1.n-1) — 3

We note that as p = oo in equation (7), Uy (b) is
finite only for the uniform blur matrix. From equation
(13), we see that the mean field approximation provides
the uniform blur matrix solution as p — co. Thus, if we
consider annealing of the regularization parameter u,
the result minimizes the objective function, as is borne
out by our simulation results (Table 1). Now, consider
Equation (8). Here, in the 4 — oo case, the solution

. is not the uniform blur case. This is useful when one

is trying to estimate blur matrices which have sharp
changes in blur values.

Further, by using linear combinations of these two
energy functions in the form A; Uy (b) + AUz (b), we can
handle all kinds of blur matrices by using appropriate
values for A\; and As.

4. THEORETICAL INSIGHT

In the spirit of similar investigations by Geiger and
Girosi [11], we have studied the relations in (7) and (8)
and the part played by p in them

If u=0in (7), we get

P,
b(m,n) = U (9)
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In order to prove that this formulation satisfies y = Bz,
consider

P(mvn) = Z y(iyj)x(i—mrj—n)
(¢,5)el
= Z Z T(i—p,j-q)b(p,q) X
(i.5)el (p,a)EW
T(i—m,j—n) (10)
Simplifying,
Pmny = bim,n) Z “’?i—m,j—n)"‘ Z bp,q)Um,nip.0)
(i.5)er (p.g)EW
(11)

Finally, we get

b _ Plm,n) — Z(p,q)eW b(p,0)U(m,nip,0)
(mvn) - U

(12)

Thus, we have proved that the mean field approx-
imation does indeed give a solution to the equation
y = Bx when u = 0.

Substituting g — oo in (7), we get

3 5 ,n—1 +I;m—1,n

This implies that for large values of u, we have
“no trust” on the observed data and, instead, rely on
smoothing to provide an estimate of the blur.

Thus, u indicates the amount of “trust” placed on
the data. If there is a lot of noise present, then we
place very little trust on the data and g is high i.e.
smoothing is high. If noise is negligible, then we place
a lot of trust on the data. Hence, in this case, x4 should
be small.

5. SIMULATION RESULTS

We have made a comparative study of algorithms based
on (7) and (8). In both cases, we observe convergence
in norm of the blur matrix as p increases. The energy
function used in (7) works better for uniform blurs (Ta-
ble 1) ( or, in general, “smooth” blurs ), while the for-
mulation in (8) works better for delta blur (Table 2) (
or, in general, “non-smooth” blurs ). Thus, by using
appropriate weights for U (b) and Uz(b), we can handle
any kind of blur matrix by developing the appropriate
mean field equations.

6. CONCLUSION

By using the technique of the mean field approxima-
tion, we have been able to analytically calculate the

£ | uniform blur case

0.0 0.000587
100.0 0.000577
500.0 0.000532
1000.0 0.000497
2000.0 0.000451
4000.0 0.000247
4700.0 0.000169

Table 1:Error norms for uniform blurs for ¢ = 2.95
corresponding to U (b)

u | delta blur case

0.0 0.01640
100.0 0.02714
500.0 0.03585
1000.0 0.03559
2000.0 0.02619
4000.0 0.01275
4700.0 0.00997

Table 2:Error norms for delta blur for ¢ = 2.95 corre-
sponding to Uz(b)

partition function and estimate the PSF for all kinds
of blurs. Although the algorithm is essentially a super-
vised learning process, we believe that this would help
in developing better algorithms for the blind deconvo-
lution problem.
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