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ABSTRACT

This paper describes the Permutative Vector Quantiza-
tion (PVQ) scheme as a special case of a more general
structurally constrained Vector Quantization concept.
This concept makes it possible to increase the vector di-
mensions beyond the technical bounds of conventional
VQ and to exploit, by means of this, the inter-pixel cor-
relations in large image blocks. Furthermore, a code-
book design algorithm adapted to pemutative VQ is
proposed and it is shown experimentally that the cod-
ing performance of conventional VQ can be improved
using the present scheme.

1. Introduction

Vector Quantization (VQ) is a well-kown method used
for data compression. In the case of image compression
[1], the image is devided into blocks of size n x n (n =
3,4 usually). These blocks are then approximated by
the closest (in the sense of a given distance measure)
block taken from a codebook. Since the aim of the
method is to exploit correlations between the pixels
of the blocks, the codebook is adapted to the image
statistics by means of codebook design algorithms, like
the well-known LBG algorithm [2].

It is a result of Shannon’s rate distortion theory
[3] that for a given rate r the distortion of the vector
quantized image decreases with growing block dimen-
sions n. On the other hand, again for a given rate r, the
number of codebook vectors grows exponentially with
n. This results not only in an exponentially increasing
storage complexity, but also in an exponentially grow-
ing nearest neighbor (NN) search complexity. Further-
more, a reliable codebook construction becomes unfea-
sible, since large training sequences are necessary to
represent the statistics of the signal blocks. The use of
large block dimensions is therefore restricted by these
technical bounds. Much work has been done in the
past to overcome the complexity problems by imposing
certain structural constraints onto the codebook. By
means of these structures, the number of codewords to
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be stored can be reduced and/or the nearest neighbor
(NN) search can be accelerated. In this sense the Prod-
uct Code method [4], Lattice Vector Quantization [5],
tree structured VQ [6] and several other VQ schemes (7]
have been proposed to counteract the complexity prob-
lems. For equal block size, the performance of these
alternative methods is generally inferior to that of the
classical VQ. This is due to the observation, that the
structural constraints imposed onto the codebook are
usually not verified by the probability density function
of the signal blocks. It is therefore essential to apply
only constraints that are apparent in the signal statis-
tics in order to minimize the suboptimality.

This point of view leads us to a concept of vector
quantization which will be presented in the following
section. It will be refered to as structurally constrained
Vector Quantization. Permutative Vector Quantiza-
tion (PVQ), which is investigated here for the com-
pression of still images, can be considered as a special
case of this approach. A presentation of the method as
well as a discussion of its physical sense is given in sec-
tion 3. The original paper [8], which presented PVQ for
speech compression, did not propose an adapted code-
book design algorithm, taking into account the specific
structure of the coder/decoder. We will therefore elab-
orate such a clustering algorithm in section 4. Finally,
the performance of permutative Vector Quantization is
compared to classical VQ in section 5.

2. Structurally Constrained Vector
Quantization
Let us consider a codebook vector y;, ¢ = 1,...,N.
Instead of coding an incoming vector x with only this

codevector, we could imagine to derive a whole set of
codevectors

V= {yijlyii = fily:),i=1...,N} (1)

by some structural relations f;, j = l,...,A_/'._ Op-
timality is achieved, if the codebook of N x N vec-
tors created in this manner corresponds to the classical
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VQ codebook. In general, this is not possible, since
the structurally constrained vector quantizer has only
N 4+ N degrees of freedom, compared to the N x N
of the optimal quantizer. Hence, the optimal choice of
the basic codevectors y; and the relations f; is impor-
tant to compensate for the imposed constraints. The
codevectors y; and the functions f; should minimise
the global distortion D of the vector quantizer applied
to a training set S = {x;,! = 1,...,|S|} of |5]| training
vectors. that is.

min(D(ys, f;, S)) (2)

yif;
has to be solved. Due to the infinity of possible struc-
tural relations f;, it is obviously impossible to deter-
mine the general solution to this problem. Several sim-
plifications can be considered. Well-known examples
are the Gain-Shape vector quantizer proposed in [4]
or the mean removed Gain-Shape vector quantizer [9]
which consider ‘first-order’ polynomials as structural
relations. In these cases the functions f; are given by
f; = bjy + a;, where y is a normalized, i.e. basic,
codevector and b;, a; a set of polynomial coefficients.

PVQ, on the other hand, proposes an alternative
way of approximating the solution of (2), that is it
simply imposes a priori physically justified relations f;.
Taking into account these relations f;, the basic code-
vectors y; can then be determined using an adapted
clustering algorithm presented in section 4.

Let us turn our attention to the complexity prob-
lems of Vector Quantization. Using structurally con-
strained VQ, the storage complexity can be reduced by
a factor of N to

2n2r

N .
N

(3)

As to the NN search complexity, different strategies can
be considered, depending on the functions f;. Most
beneficial is the case where the optimal f; and y; can
be found separately or sequentially as in the case of
Gain-Shape coding [4]. In other cases, such as PVQ,
fast algorithms exist, that find the best structural re-
lation f; for a given codevector y; in less than O(N)
operations.

3. Permutative Vector Quantization

This section outlines the structural relations used in
the case of PVQ. For this, let us consider a codevector
yi which is devided into m subvectors of equal size.
The subvectors could be the lines or columns of the
image blocks or simply subblocks. A subcodebook Y;
can be derived from this vector by generating all the
permutations of the m subvectors, which will give us

A
e
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Figure 1: Some Permutations of contours blocks; (a)
vertical contour, (b) horizontal contour, (c) diagonal
contour

m! vectors. The size of the basic codebook to be stored
becomes therefore

2n2r

m!

N

Also the search complexity is reduced, since fast NN
search algorithms exist [8] [10] that find the closest per-
mutation in O(m3log(m)) instead of O(m!) operations.

The special interest of this method for image cod-
ing can be seen in figure 1, where several permutations
of the lines (columns) of a contour block are shown.
Different orientations and positions of the contours can
therefore be obtained by permutating a few basic blocks.
This method appears to be even more adapted for video
coding, since from one frame to the next the motions
of the scene can be followed by permutating the lines
or columns of the image blocks. A further possibility
is to permutate sub-blocks of the image block rather
than lines or columns, since in this case the correlation
within a block is exploited more efficiently.

4. Codebook Design Algorithm

In order to fully exploit the coding gain due to the
increased block size, it is essential to include the struc-
tural constraint of the method on the codebook during
the design of the code. The optimal way of doing this
is to use an algorithm derived from the LBG algorithm
[2]. The principle of the LBG is the successive opti-
mization of the coder, while keeping the decoder fixed,
and of the decoder, while keeping the coder fixed. In
practice, this means that at each iteration, the algo-
rithm performs first the partitioning of the training set
vectors x;, { = 1,...,|S|, into N clusters using the
codevectors of the previous iteration. Then the new
codevectors are determined as the centroids of the clus-
ters.
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(0) Initialisation :
e iteration: ¢ =0
¢ initial codebook :
Y(0) = {y:(0),i=1,...,N}

¢ initial global distortion : D(—1) — oo
(1) Coder Optimization :
o clustering of the permutated training set
Sy ={Pi(x1),l=1,...,|S],i=1,...,ml}
into NV classes C;,i=1,..., N,
with the classification rule :

Py(x) € Ci iff d(Py(x),yx) < d(Pj(x),yi),
Vi=1,...,N;j=1,...,m!

o determine D(g) and stop if

D(g —1) = D(q)

< threshold
D(q)

(2) Decoder Optimization :

e optimal decoder for the classification of step
1

vi(q) = centroid(C;),i=1,..., N

e set ¢ — ¢+ 1 and goto step 1

Table 1: The Codebook Design Algorithm PLBG

It is the optimization of the coder that changes dur-
ing the PVQ codebook design. In this case not just
each training set vector x;, [ = 1,...,|S|, but a permu-
tation of each training set vector Pj(x;), ! =1,...,[S],
J =1,...,m! is appointed to one of the N clusters
such as to minimise the distortion of the clustering.
More precisely, for a signal vector x; the distance of
each of its m! permutated versions Pj(x;) to each of
the N basic codevectors y; is determined. If the vec-
tor pair Py(x;) and yx gives the minimum distance,
the permutated codevector Py (x;) is appointed to class
Cr. Note that this classification can be done using the
fast NN search algorithm proposed in [8] or [10]. It
should also be noted, that the coder actually replaces
a signal vector by the closest permutation of one of
the basic codevectors, i.e. it determines the distances
d(x;, Pj(yi)). However, it has been shown in [11] that
this is equivalent to the determination of d{ Pj(x;), yi),
as is done here.

n|{ N | method PSNR/dB
Salesman | Puppet
3 42 CcvQ 28.4 21.17
4 [ 768 CcvQ 31.36 22.48
4 32 LBG 27.2 19.90
4 32 PLBG 27.37 20.16
5| 269 | PLBG 29.16 20.59
6 | 4322 | PLBG 32.57 21.33
Table 2: Coding Results; CVQ - conventional VQ,

PLBG - permutative VQ using the PLBG algorithm,
LBG - permutative VQ using the LBG algorithm

Subsequently, as for the LBG algorithm, the new
codevectors, i.e. cluster centroids, are calculated. Ta-
ble 1 shows the codebook design algorithm referred
to as PLBG (permutative LBG). Its demonstration of
convergence is straightforward, since it is easily seen
from table 1 that neither during the coder optimiza-
tion step nor during the decoder optimization step the
global distortion can be increased.

5. Experimental Results

In the following, the permutative VQ scheme is com-
pared with conventional VQ. The image coding results
stated hereafter show that by using the permutative
VQ scheme, it is possible to obtain higher signal to
noise ratios compared to conventional VQ when the bit
per sample rate 1s fixed or, alternatively, lower bit rates
for a given signal distortion. Table 2 lists the PSNR-
values for the two coding methods at a constant rate
7 = 0.6bpp. In the present case, the columns of the im-
age blocks are permutated, but it was observed, that
similar results are obtained, when the lines are per-
mutated. The codebooks are calculated on the basis
of four different images, including the Salesman image
but not the Puppet image. Naturally the coding qual-
ity increases with the image block sizes and it is clear
that for equal block size, the classical VQ gives better
results than the permutative VQ. However, since com-
plexity becomes prohibitive for block sizes greater than
n = 4, at the indicated rate, no further improvements
are possible with the standard method. On the other
hand, permutative VQ makes greater image blocks pos-
sible and for n = 6 the results of classical VQ is outper-
formed by more than 1dB in the case of the Salesman
image. This numerical improvement goes along with a
substantial increase in visual quality as can be seen in
figure 2, the Salesman image (288 x 360) coded by con-
ventional VQ (a) and coded by permutative VQ (b) is
illustrated. Note that, no block effect can be observed
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in the image coded by the permutative VQ scheme.
despite the fact that relatively large blocks have been
used. Furthermore it has been observed that contours
are well represented by the new VQ method. The ef-
fects of permutations on contours. described in section
3.. could be considered as an explanation of this fact.

In the case of the Puppet image. which did not be-
long to the training set. the same observations could
be made. but we see from table 2 that greater vector
dimensions (n > 6) are needed to improve the coding
results of conventional VQ.

Table 2 also indicates the improvement of the per-
mutative VQ scheme by the codebook optimization al-
gorithm presented here. It has also been observed that
the coding results vary slightly when the initial condi-
tions are changed. These variations are comparable to
those observed in the case of the LBG algorithm.

6. Conclusions

The paper presented structurally constrained VQ. a
concept allowing the design of a whole series of VQ
schemes. We restricted ourselves to a special case. per-
mutative VQ. and we showed that it can improve the
compression results of conventional Vector Quantiza-
tion. Further research is being carried out on the de-
velopment of alternative coding schemes derived from
the structurally constrained VQ concept. with the aim
of further reducing the coding complexity.
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Figure 2: (a) Salesman coded with conventional VQ.
{b) Salesman coded with permutative \'Q
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