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ABSTRACT

The performance of an ordinary Vector Quantizer (VQ) can
be improved by incorporating memory in the VQ scheme. A VQ
scheme with finite memory known as Finite State Vector Quanti-
zation has been shown to give better performance than the ordi-
nary VQ. The major problems with the FSVQ are the lack of ac-
curate prediction of the current state, the state codebook design,
and the amount of memory required to store all the state code-
books. This paper presents a new FSVQ scheme called Finite-
State Residual Vector Quantization (FSRVQ) in which a neural
network based state predictionis used. Furthermore, a novel tree-
structured competitive neural network is used to jointly design
the next-state and the state codebooks for the proposed FSRVQ.
Simulation results show that the new scheme gives better per-
formance with significant reduction in the memory requirement
when compared to the conventional FSVQ schemes.

1. INTRODUCTION

In Vector Quantization (VQ) a block of pixels (vector) is en-
coded as oppose to scalar quantization in which each pixel is
encoded independently [1]. For a given bit-rate, the codebook
search complexity increases exponentially with the increase in
block size. Therefore, an ordinary VQ uses a relatively small
block size; consequently, in highly correlated data such as images
there still exists a high correlation among neighboring blocks.
This inter-block correlation can be exploited by incorporating
memory into the VQ scheme to further improve the performance
of a VQ. Several VQ schemes with memory such as Predictive
Vector Quantization (PVQ) [1]-[3] and Finite-State Vector Quan-
tization (FSVQ) [1], [4]-[8] have been proposed in the literature
where the inter-block correlation is exploited.

An FSVQ has a finite number of states where with each state
a distinct small codebook is associated. The current state of
the encoder (and decoder) is determined by the previous state
and the previously encoded vectors. The input vector is then
quantized using the current state codebook. Problems with an
FSVQ are the lack of accurate prediction of the current state of
the encoder (and decoder), the state codebook design, and the
large amount of memory required to store all the state codebooks.
Inaccurate prediction of current state duplicates a large number
of unnecessary (redundant) states; consequently, a huge amount
of memory is required to store all the codebooks corresponding to
these redundant states. Therefore, the major task in an FSVQ
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is the joint optimization of the next-state function (next-state
codebook) and all the state codebooks, which would eliminate
the redundant states.

In recent years, several improved FSVQ schemes have been
proposed. The FSVQ scheme proposed by Kim [6] gives better
performance than the other FSVQ schemes; however, this FSVQ
scheme uses a large number of states which increases the memory
requirements significantly. For example, for a supercodebook of
size M, M? possible states are needed. In [7], an FSVQ scheme
based on neural network classification of states is proposed which
attempts to reduce the memory requirements of an FSVQ. An-
other FSVQ scheme, called Finite-state Binary Residual VQ (FS-
BRVQ), has been proposed in [8] that combines the FSVQ with
a binary RVQ. The codebook search complexity of an FSBRVQ
is significantly lower than that of an FSVQ; however, the per-
formance of the FSBRVQ deteriorates when compared with an
FSvVQ.

This paper presents a new Finite-state RVQ scheme where
a neural network based state prediction is used. The predic-
tion is based on the previously encoded blocks and the predicted
block (vector) is used to identify the current state as well as
generating a residual vector. This residual vector is then en-
coded using the current state codebook. In order to achieve joint
optimization of the next-state function and state codebooks, a
novel tree-structured competitive neural network is developed.
The proposed scheme not only reduces the search complexity
and memory requirements significantly but also gives improved
performance when compared to an ordinary FSVQ.

This paper is organized as follows: in section 2, tree-structured
competitive neural network is presented, and in section 3 FSRVQ
scheme is presented. Experimental results for still images are
presented in section 4. Section 5 concludes the paper.

2. TREE-STRUCTURED COMPETITIVE NEURAL
NETWORK

Figure 1 shows a two-stage competitive neural network that is
used to design a two-stage RVQ [9] where each stage (codebook)
of the RVQ is represented by a single layer of the competitive
neural network (weights). In Fig. 1, each arrow represents a k
dimensional weight vector. The number of nodes (codevectors)
in the first and the second layer are represented by N; and N3,
respectively. The weight vectors W_, and ij represent the
codevectors for the first- and second-stage codebooks, respec-
tively. The weight vectors connecting all the neurons from the
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Figure 1: Two-stage Competitive Neural Networks.

first layer to a single neuron in the second layer are the same: that
is, Vjx = Vig for all j,1 € N1. In Fig. 1, the nodes j* and k* are
the winning neurons in the first and second stage, respectively.
The input to the first stage is a k-dimensional vector X, € ®*
and the input to the second stage is the quantization error vector
e(ql)j_ obtained from the first stage winning neuron j*.

A modified multi-stage competitive neural network known as
Tree-structured competitive neural network (TSCNN) is used to
design the FSRVQ. TSCNN can easily be implemented by modi-
fying a multi-layer competitive neural network. Let us reconsider
the two-layer competitive neural network shown in Fig. 1. If the
weights connecting all the neurons from the first layer to a single
neuron in the second layer are all different i.e. Vjx # Vi for
alll # 7, 1,7 € N1, then a TSCNN is obtained. Figure 2 shows
the equivalent diagram for a TSCNN. This particular TSCNN is
used to design a Finite State RVQ (FSRVQ) where the first layer
represents the next state function with N states and each state
having a codebook of size N7 is represented by the second layer
of the neural network.

3. FINITE STATE RESIDUAL VECTOR
QUANTIZATION

This scheme incorporates a neural network predictor for the
state prediction. The basic structure of the scheme is shown in
Fig. 3. The scheme consists of a neural network predictor and
a next-state codebook containing m codevectors corresponding
to each of the m states. Each state codebook (subcodebook)
consists of N codevectors (all state codebooks are assumed to
have the same size). This scheme differs from the conventional
FSVQ in that the state codebooks encode the residual vectors in-
stead of the original vectors. A neural network predictor predicts
the current block based on the four previously encoded blocks as
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Figure 2: Tree-structured Competitive Neural Network where
the first layer implements the next state function and the
second layer implements the state codebooks.

shown in Fig. 3. The predicted vector X is then classified by
performing a nearest neighbor search of the next-state codebook.
The index (In,) of the codevector closest to X, in Euclidean
distance sense represents the current state. The residual vec-
tor E, = X, - X, is then encoded using the current state
codebook. The neural network predictor is designed using the
back-propagation learning algorithm [2]. The next-state code-
book and state codebooks are designed using the tree-structured
competitive neural network mentioned in the previous section.
The summary of the design procedure is given below.

Algorithm:

Initialization: Given the training set T = [Xn;n = 1,2,...,M].
Initialize the tree-structured competitive neural network by se-
lecting the weights WJ ’'s and ij ’s corresponding to the code-
vectors of the initial codebooks for the nert-state codebook and
the residual state codebooks, respectively. Choose the mazimum
number of iteration Tmaz be a large number. Set the current
number of iteration v — 0. Choose initial learning rate o™ and
the size of initial neighborhood vT™. .

STEP 1: Compute the output of the predictor X, based on the
four previously encoded blocks as shown in Fig. 3.

o Compute distance D; between the predicted vector X, end
each of the codevectors WJ' and select the winning code-
vector WJ: with minimum D; such that

IXn - Wi | < 1IXn =Wll - for j#5% (1)
o Modify WJ- ’s contents and its neighboring codevectors by

Wi = Witol (Xa-W;) for jem, ()
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Figure 3: An FSRVQ with neural network state
prediction.

where t is the time inder and A1, = { y1s | maz(1,5* —
V1) < y1s < min(N1,7* + v])}. v] represents the topo-
logical neighborhood around the winning codevector. The
learning rate o] € [0, 1] is the adaptation gain term. The
neighborhood and learning rate is decreased with the num-
ber of iterations as given below

uf:[u?(l—- L )]

Tmex

aI:a?(l— z )

Tmax

where [z] represents the smallest integer greater than z.

STEP 2: Find the residual as

E.=X,-X.

o Compute the distance Dy between the residual error E,.
and each of the codevectors VJ.k, and select the winning
codevector VJ-k- with minimum Dy such that

HEn = V|| S |En = Vjsi]l ~ for k£ k" (3)

o Modify the contents of the winning codevector and its neigh-
boring codevectors by

V= Vi, +af (xn — X, - V;.,,) for k€ Az
(4)

where Azs and af are defined 1n a similar manner as de-

fined in step 1.

o Find the current reconstructed vector Xy as

Xn = Xn + V;t;. (5)
STEP 3: Setn — n+1. Ifn < M go to STEP I; otherusse goto
next STEP.

STEP 4: Set 7 — 7+ 1. If T < Tmaz, then set n — 0 and goto
STEP 1; otherwise STOP.

4. SIMULATION RESULTS

Computer simulations were performed in order to implement
the proposed FSRVQ scheme. Two FSRVQ schemes were de-
signed with the state codebooks of size 32 and 16, respectively.
Both FSRVQs use only 16 states. A block size of 4 X 4 was used
with a total of 81920 training vectors. Two 512 x 512 test images
Lena and Boats (test images Lena and Boats were outside the
training set) were used to evaluate the performance of the pro-
posed FSRVQ. Simulation results are presented in terms of Peak
Signal to Noise Ratio (PSNR) at the average bit rates (entropy
coded) of 0.25 bit per pixel (bpp) and below.

Table I shows the performance comparison of the proposed
FSRVQ with that of the FSVQ schemes given in [6] and [7] for
the test image Lena. In Table I the search complexity is given in
terms of number of multiplications required to encode 1 pixel and
the storage requirement is in terms of number of bytes required
to store all the codebooks. Note that computational complexities
of the next-state functions for different FSVQ schemes are not
included in the comparisons. It can be seen from Table I that
the proposed FSRVQ scheme outperforms the FSVQ schemes
developed in [6], [7] by 0.65 and 0.5 dB, respectively. The FSVQ
scheme developed in [6] uses a supercodebook of size 256 and
state codebooks of size 64 each. The number of states used is
65536. The memory requirements for the proposed FSRVQ are
about 512 times lower than that required by the FSVQ developed
in [6]. The FSVQ scheme developed in (7] uses 1024 states and
state codebooks of size 64 each. This corresponds to a memory
requirement of 1056768 bytes (compare with the FSRVQ scheme
that requires only 8448 byte).

Table II shows the performance comparison of the proposed
FSRVQ with that of JPEG (current standard for image compres-
sion) for the test images Lena and Boats. It can be seen from
the Table II that the proposed FSRVQ scheme clearly outper-
forms JPEG at these bit rates. Figure 4 shows the original and
encoded image Lena using FSRVQ and JPEG at the bit rate of
0.18 bpp. It is interesting to note that the visual quality of the
image compressed by JPEG is much worse than indicated by the
PSNR. The reason for this is that at low bit rates JPEG discards
most of the high frequency components which results in annoying
blocking artifacts.

5. CONCLUSION

In this paper a new FSVQ scheme is introduced. The proposed
scheme uses a neural network based state prediction. Further-
more, residual obtained by subtracting the predicted vector from
the original vector is then encoded using the current state code-
book. A novel tree-structured competitive neural network is
used to jointly design the next-state and the current state code-
books. The joint optimization of next-state codebook and the
state codebooks eliminates a large number of redundant states.
Simulation results show that the proposed scheme outperforms
the ordinary FSVQ schemes in terms of performance, search com-
plexity, and memory requirements. Furthermore, the proposed
FSRVQ clearly outperforms JPEG at low bit rates. A better
rate-distortion performance can be achieved by imposing a con-
straint on the output entropy of the proposed FSRVQ scheme.
The design of Entropy-Constrained FSRVQ is the focus of the
future research.
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Table I: Performance comparison of the proposed FSRVQ with
that of FSVQ schemes given in Ref. 6 and 7, respectively, for

the test image Lena.

FSVQ Bit-rate | PSNR | SC* SR**
Technique bpp dB
Proposed 0.23 30.65 32 8448
Ref. 6 0.25 30.00 64 4329472
Ref. 7 0.24 30.15 64 1056768

* Search complexity

*x Storages requirement

Table II: Performance comparison of the proposed FSRVQ with

that of JPEG for the test images Lena and Boats.

Test FSRVQ JPEG
Image | Bit-rate | PSNR | Bit-rate | PSNR
bpp dB bpp dB
Lena 0.23 30.65 0.23 29.94
Lena 0.18 29.68 0.18 27.33
Boats 0.20 28.55 0.20 27.44
Boats 0.25 29.53 0.25 29.06

(<)

Figure 4: (a) Original image “Lena”, (b) encoded image
“Lena” using FSRVQ, SNR = 29.68 at bit-rate = 0.18 bpp,
(c) encoded image “Lena” using JPEG, SNR = 27.33
at bit-rate = 0.18 bpp.
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