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ABSTRACT

In this work, we propose a method called incremental Fourier
synthesis to generate images based upon the 2-D extended
self-similar (ESS) model. This algorithm creates the sta-
tionary increments of ESS processes by Fourier synthesis.
Then, the increments are added up to generate the nonsta-
tionary 2-D ESS process. Because the new method can take
advantage of the FFT, its computational complexity is only
O(N?1log,(N)), and its memory requirement is O(N?) for
an image of size N x N.

1. INTRODUCTION

Fractional Brownian motion (fBm) is a stochastic model
which is useful to describe many natural phenomena [5}.
In computer graphic applications, the generation of real-
izations of 2-D fBm is used to create natural looking land-
scapes and clouds [4], [6]. A major disadvantage of fBm
is that the appearance of its realizations is controlled by a
single parameter H known as the Hurst parameter. Even
though a natural texture may exhibit similar roughness over
a large range of scales, it is improper in reality to assume
the roughness to be constant for arbitrary large or small
scales. Recently, we introduced a 2-D extended self-similar
(ESS) process to model landscapes that have varying de-
grees of roughness at different scales [2]. We demonstrated

how parameters can control the size of bays or roughness of

the coastline at various scales.

In this work, we introduce a fast new method called
incremental Fourier synthesis to generate 2-D ESS where
the stationary increments of ESS are created by a Fourier
synthesis method. The increments are added up to generate
the nonstationary 2-D ESS process. Since the new method
takes advantage of the FFT, its computational complexity
is only O(N?log,(N)), and its memory requirement is only
O(N?). Moreover, the method uses statistics which are as
close as possible to the exact ESS statistics.

This paper is organized as follows. Section 2 provides
a brief overview of ESS processes. Section 3 presents some
background material about stationary periodic random fields
which is necessary to understand the synthesis algorithm
presented in Section 4. The new algorithm is compared
with standard Fourier synthesis for generating 2-D fBm in
Section 5, and some concluding remarks are given in Sec-
tion 6.
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2. 2-D EXTENDED SELF-SIMILAR
PROCESSES

To model 2-D landscapes, we define a 2-D ESS process
By¢(tz,ty) to be a mean zero multivariate Gaussian process
such that at the origin Bf(0,0) = 0 and the variance of the
increments of By(tz,ty) follow a power law of

VAR[Bf(ts + ra, by + ry) = By(ta, ty)] = 0” f(rz,7my) (1)
where 0% = VAR[B;(sz + 1, 8y) — By (ss, 55)] and

flrzyry) = fl(rz o) TlIR)-

Note that Ht-“R = V/{TR{ for a positive definite R. Equa-
tion (1) is the 2-D extended self-similarity condition, and
it means that the variance of any increments is dependent
only on the length of the increment. The function f(-) is
known as the structure function, and the form of the struc-
ture function is not completely arbitrary [1]. The structure
function controls the appearance of 2-D ESS processes as
discussed in [2], [3]. Note that when f(s) = |s|*¥, then the
ESS processes is simply fBm. Thus, fBm forms a subset of
ESS processes.

Two dimensional ESS processes are nonstationary. Their
increments, however, form stationary processes. We define
the first order discrete increments of 2-D ESS processes as,

Ii(ml’my) = Bf(m-‘r +1, my) - Bf(mxv my)v
Iy(mg, my) = By(mz,my + 1) — Bf(mz, my).

The second order increments of 2-D ESS processes is defined
as,

I(mz,my) = [:(mz, my +1) = Iz(mz, my)

= Iy(m: +1,my) — Iy(mz, my) (2)
= B(mz + 1,my + 1) + By(mz, my)

—Bg¢(mz +1,my) — Bf(mz, my + 1).

The first and second order increments are stationary,
and the correlation functions of the increments are,

P
r;(m,,my) = 7[f(m.—= + l,my)+f(m, - 1v’"v)_2f(m=r”‘v)]v

] 3)
ry(memy) = T f(me,my + ) +f (me,my = 1) =2f (e, my )]
)
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ra(ma,my) = S2(f(ms +1,my) + f(mz — 1,m,)

+f(mz,my +1) + f(mz, my — 1)) = (f(mz+1,my +1)

+f(mz+1,my — 1)+ f(mz — 1,my + 1)

+f(mz ~ 1, my — 1)) — 4f(mz, my)]. o)
5

3. PERIODIC RANDOM FIELDS

Consider a periodic stationary Gaussian random field whose
correlation function satisfies

R(mz + kN, my +IN) = R(mz, my), Vk,leZ. (6)

Each realization of this random field is also periodic with
a period of N in both the z and y directions. Thus, it
is only necessary to know the values of the field over an
N x N lattice of points, and the correlation function only
needs to be considered for time lags which lie on an N x N
grid. Due to symmetry of the correlation function about
the origin and (8), we have

R(mz,my) = R(N —mz, N —my) = R(mz — N,my). (7)

Equation (7) uniquely determines the correlation function
on the lattice m,, my € [0, N—1]x [0, N —1] when given the
values for lags m; € [-N/2 + 1, N/2] and m, € [0, N/2].

The importance of periodic random fields is due to the
fact that the 2-D DFT is the Karhunen-Loéve transform
(KLT) for such fields. A nice result of this property is that
realizations of periodic random fields are easy to generate
because one just needs to scale white noise by the square-
root of the field’s power spectrum and then calculate the
inverse 2-D DFT. In fact, this generation procedure is used
in normal Fourier synthesis of fBm where the power spec-
trum is assumed to be

N H
Blkarky) = C/NVFEF B2 forkayky =0,...,N/2. (8)

The other values of the power spectrum are determined
by symmetrically expanding R(kz,ky). Usually, the first
N/2 x N/2 values of the generated field are taken as the
fBm image in order to avoid artifacts from the periodicity
of the field.

4. INCREMENTAL FOURIER SYNTHESIS

The idea to create samples of ESS over an (M +1) x (M +1)
grid is to generate the stationary increments over an M x
M grid. We attempt to create periodic random fields of
size N x N (where N = 2M) whose correlation function
R(mz, my) matches the correlation function of the nonpe-
riodic increments for (mz,my) € [-M, M] x [-M,M}. The
other values of the correlation function for the periodic field
can be determined via symmetries. Then the increments
can be synthesized by using the corresponding power spec-
trum to scale white noise.

Before we describe the new synthesis algorithm, it is
worthwhile to point out two issues. One problem to con-
sider is that the target periodic correlation function may
not be positive definite. Due to the Gibbs phenomenon,
some of the values of the DFT of the desired periodic cor-
relation function may be negative. By considering these

bad values to be zero, we create the actual power spectrum
which generates the increments. Another point to consider
is that the 1st and 2nd order increments cannot be gener-
ated independently or else major creasing will appear. The
dependence of I2(mz, my), I:(mz, my), and Iy(mz, my) is
due to (2) where the subtraction is taken modulo N. Now,
we describe the new algorithm in detail below.
Algorithm: Incremental Fourier Synthesis Method
1. Create white noise processes such that for
k:=0,...,N,and ky =0,...,N/2, W(kz,ky) ~ N(0,1),
é(kz, ky) ~ Uniform[0, 27), and ¢(0,0) = #(N/2,N/2) =
$(N/2,0) = (0, N/2) = 0.

2. Calculate R;(m., my) (the desired correlation function
of I(mz,my)) by (5) for m = —-N/2 +1,...,N/2 and
my =0,...,N/2,. Then symmetrically expand the correla-
tion function via (7).

3. Calculate the power spectrum by

Ro(kz,ky) = FF T, [FFT s, [Ra2(ma, my)]).

4. Let the actual positive semidefinite power spectrum
S(kz,ky) = 0 when kz = 0 or ky = 0. Otherwise, S(kz,ky)
= max(0, R(kz, ky))-

5. Synthesize the DFT coefficients of I2(mz, my) so that
fork; =0,...,N—1land ky =0,...,N/2:

Fa(ka,ky) = N\/Sa(ka, k)W (e, ky)e?okek9),

and fp(kz,ky) = I3(N = kz, N — ky) elsewhere.
6. Calculate the 2nd order increments for m;, my, =0,...,
M-1

Iy(mz, my) = IFF Ty (IFF T, [f2(kz, ky)]).

7. Create white noise processes such that for

kz,ky =0,...,N/2, W(kz) ~ N(0,1), Wy(ky) ~ N(0,1),
¢z(kz) ~ Uniform[0, 27), ¢y(ky) ~ Uniform[0,27), and
$2(0) = ¢y(0) = ¢=(N/2) = ¢4 (N/2).

8. Calculate R:(kz,ky) and Ry(kz, ky) for kz,ky =0,...,
N/2 using (3) and (4). Symmetrically expand the correla-
tion functions using (7).

9. Compute the desired power spectrum of the 1st order
increments at the zero frequencies via

Ro(kz,0) = FFTm [Y .01 Ri(ma, my)],

my=0
Ry(0,ky) = FFTpn [So0 "1 Ry(mz,my)].

me=0
10. Define the actual positive semidefinite power spectrum
of the 1st order increments at the zero frequencies via
S2(ks,0) = max(0, Rz (k+,0)),
Sy(0, ky) = max(0, Ry(0, ky)).

11. Synthesize the DFT coefficients of the 1st order incre-
ments so that I;(kz,ky) is equal to

. Fo(ke k )e_,'znk,,/N’ for kg, ky =1,...,N—1,

—]251n(27rk /N v
N8, (kz, 0)Wo(ks)e?®=(5=) | for k; =0,...,N/2,
and ky =0,

I (N — kz,0), fork: = Nj/2+1,...,
N —1, and k, =0,
0, otherwise.
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and [y(kz, ky) is equal to
'Me'ﬂ”k'“\r, for kz,ky=1,...,N—1,

~ 1750 2k [N) '
N/54(0,ky )W,y (ky)e??v*v), for k. =0 and

k,=0,...,N/2,
I3(0, N = ky), for k; =0 and
ky=N/2+1,...,N—1,
0, otherwise.

12. Compute the 1st order increments along the image
boundaries for mz,my =0,...,M - 1:

Io(mz,0) = FIFFTm, [ L) La(kz, k)],
I,(0,my) = HIFFTm, [0 1o Lo(ks, ky)]-

13. Add up the increments to calculate the ESS field for
Mg, my =0,..., M via

B¢(0,0) =0,

B¢{m;,0) = Bf{(mz — 1,0) + I.(mz — 1,0),
By(0,my) = B (0, my — 1) + [,(0, my — 1),
By(maz, my) = Bf(maz,my — 1) + By(mz — 1, my)
—By(my —1,my — 1} + l2o(mz — 1, my — 1).

5. COMPARISON TO FOURIER SYNTHESIS

In this section, we compare incremental Fourier synthesis to
standard Fourier synthesis for the application of generating
samples of 2-D fBm. First, we calculate the synthesized
correlation functions of the two methods by computing the
inverse FFT of the power spectrums that were used to scale
the white noise. Then, we use the correlation function to
calculate the structure function based on the z directed
increments of the generated picture, i.e.

_ VAR[Bf(ms +d,my) — By(mz, my)]
f(d) - VAR[Bf(m:: + lymy) - Bf(mri my)]’

To get a local measurement of the rate the structure func-
tion is increasing with respect to scale we define a general-
ized scale dependent Hurst parameter as,

A(m) = +logy(F2™)/F(2™).

The values H(m) for the incremental and standard method
with H set to 0.2 and the image size set to 512 x 512 are
shown in Figure 1. The figure shows that the actual process
generated by incremental Fourier synthesis is nearly con-
stant, i.e. virtually self-similar. It is also clear that images
generated by standard Fourier synthesis are not statistically
self-similar. In fact, the figure suggests that the generated
images will be smoother at finer scales since the value of
H(m) becomes larger.

Figures 2 and 3 show the images generated by the stan-
dard and incremental Fourier methods, respectively, at dif-
ferent scales where H = 0.2. At each scale, the resolution
of the picture is 64 x 64, and each picture is scaled so that
the dynamic range of the pixel values cover all 64 gray level
values. The statistical self-similarity is evident for the fBm
realization created by our new method. As predicted by
the generalized Hurst parameters, the fBm realization gen-
erated by traditional Fourier synthesis is smoother at finer
scales.
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Figure 1: Theoretical values of H(m) for the 512 x 512
realizations of the two Fourier methods when H =0.2.

6. CONCLUSIONS

A new method called incremental Fourier synthesis was pro-
posed to synthesize 2-D ESS process. The advantage of the
method is that it is a relatively fast algorithm while it gen-
erates processes whose statistics virtually match those of
true 2-D ESS processes. By choosing alternative forms of
the structure function, an artist has precise control of the
“roughness” of the texture with respect to scale. Further-
more, the algorithm can be extended to generate 3D (video)
and even higher dimension ESS processes at the expense of
O(N%log,(N)) computations where d is the dimension.
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(d)

Figure 2: Zooming into a texture generated by standard
Fourier synthesis with H = 0.2: (a) sampled every 8 units
(m = 3), (b) sampled every 4 units (m = 2), (c) sampled
every 2 units (m = 1) and (d) sampled every unit (m = 0).

Figure 3: Zooming into a texture generated by incremental
Fourier synthesis with H = 0.2: (a) sampled every 8 units
(m = 3), (b) sampled every 4 units (m = 2), (c) sampled
every 2 units (m = 1) and (d) sampled every unit (m = 0).
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