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ABSTRACT

This paper reports on investigations concerning the perfor-
mance of fractal transforms. Emerging from the structural
constraints of fractal coding schemes, lower bounds for the
reconstruction error are given without regarding quantiza-
tion noise. This implies finding an at least locally opti-
mal transformation matrix. A full search approach is by
definition optimal but also intractable for practical imple-
mentations. In order to simplify the calculation of some
appropriate encoding parameter, the collage theorem and
other fast but also suboptimal approaches are applied. For
a memoryless Gaussian source and some real world images
the optimal encoding parameters in view of the structural
constraints are determined together with the minimal reach-
able distortion. This allows to quantify the performance of
the suboptimal encoding procedures.

1. INTRODUCTION

Recently so called fractal schemes gained some degree
of interest in the (image) coding community. Basic ideas
for encoding and modeling of signals by use of fractal
techniques go back to Barnsley et al., e.g. [1] and a first
implementation for antomatic encoding of images has been
proposed by Jacquin, e.g. [2]. In contrast to common linear
transformations, e.g. the DCT, whose coding gain mainly
emerges from the bindings between neighboring samples,
the non-linear fractal coding schemes also exploit some
sort of long-range correlations within the signal. In this
context those correlations are termed global and/or local
self-similarities which arises from the fact that many parts
of a natural signal are in some sense similar to the entire
signal or at least a part of it.

Coding schemes are termed fractal if a given in-
put vector is approximated by an unique fixed point of
a contractive transformation. Since not the signal itself
but the approximating fixed point - sometimes also termed
attractor - is encoded, the term attractor coding would be

2563

more appropriate but did not gain acceptance in the recent
literature.

Let x = (21,22, -+, zn)" € IR" be the entire signal,
then most common fractal coding schemes employ a non-
linear affine transformation

W:x — W(x) = Ax+b. a

consisting of a linear part A and a non-linear offset b. For
the given input signal x the goal of the encoding process is
determining the matrix A and the offset vector b such that

1. the distance d(x,xs) between the original signal
x and the fixed point x; = W(x;) of the trans-
formation W is minimal,

2. the transformation W obeys a contractivity con-
straint, and

3. the representation of A and b is simple.

In this case the parameters A, b of the transformation W
serve as fractal code. A (quantized) description of the
fractal code is transmitted to the decoder. =Since data
compression is the aim of fractal coding, some constraints
are imposed on the structure of the transformation matrix
and the offset vector in order to keep the representation as
simple as possible.

Due to the contractivity constraint the fixed point or
attractor x; = W(x;) exists and is uniquely determined
by the transformation itself. According to the contraction
mapping theorem the decoder reconstructs the fixed point
from the fractal code by solving the equation W(x;) = x;
in an iterative way. Starting from any arbitrary initial
signal x, € IR" the contraction mapping theorem states
that the sequence of iterates

k-1
X = W°’°(xo) = AFxo + Z A'b 2)
i=0
converges to the unique fixed point
x; = lim x; = (I-A)"'b 3)
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which is completely independent from the initial signal x,.

The aforementioned direct determination of the op-
timal encoding parameters A and b, sometimes termed
the inverse problem, is in general computational infeasi-
ble especially if very high dimensional input sources (e.g.
images) are concerned. This is due to the non-linear de-
pendency between the fixed point x; and the encoding pa-
rameters. A way out of this dilemma is the collage theorem
originally introduced by Barnsley in this context [3, 1]. It
greatly simplifies the determination of some suited param-
eters A, b during the encoding process since it demands to
minimize the distance d(x,x) between the original signal
x and a so called collage x = W (x) rather than between
the original signal x and the fixed point. By this way
the time consuming calculation of the fixed point during
the encoding process can be avoided. Unfortunately col-
lage coding is suboptimal which means that in general the
closest attractor is not found. But as is shown below, the
collage theorem at least provides a good initial guess which
can be modified in a subsequent optimization process. So
minimizing the “collage error” as suggested by the collage
theorem still makes sense.

Some improvements can be achieved if the collage
theorem is modified. An interesting approach is presented
in [4]. Another way is simulating the reconstruction also at
the eacoder and successively modifying the transformation
in a way that a closer attractor is achieved as proposed
in [5].

But due to the structural limitations of the fractal
transformation even without any quantization of the fractal
code no exact reconstruction of the input signal will be
possible. Hence the reconstruction error d(x, x;) consists
of one part due to the structural limitations of the affine
mapping and another part which is due to the quantized
description of the fractal code.

Despite the growing interest and available literature
concerning fractal coding there are still many open ques-
tions demanding for answers, e.g.:

*  Given the inherent structural constraints of fractal
coding schemes, how good can they perform for a
specific source model? How small is the minimal
reachable distortion for this model?

* How good performs collage coding compared with
an optimal scheme? Which improvement can be
achieved by a modified collage theorem or other pro-
posals?

*  How can a (nearly) optimal fractal coding scheme be
developed with tractable computational effort in the

encoding phase?

This paper is concerned with the aforementioned
questions and is organized as follows: Section 2 describes
a simple fractal coding scheme which serves as basis for

the presented investigations. Section 3 then deals with the
performance of this scheme and especially considers the
effects of the non-optimal encoding process. Some simu-
lation results and a brief discussion in section 4 conclude
the paper.

2. A BASIC FRACTAL CODING SCHEME

Our investigations emerge from a simplified version of
Jacquin’s scheme [6]. Instead of searching for similarities
within the entire signal, each block of the signal is treated
independently from all others. Let x = (2,23, -, &))"
be a vector of dimension n representing any arbitrary
block of the signal to be encoded. This source vector is
partitioned into m = n/ng consecutive non-overlapping
parts denoted range blocks each consisting of ng samples.
Further let the structure of the transformation matrix be
given in a way that the first sample of each range block is
formed by the weighted average of the first m samples of
the signal, the second sample of each range block by the
weighted average of the second m samples and so on. The
structure of the transformation matrix can then be outlined
as follows:

( anlockA columns \

a, 0 --- 0O
0 a --- O
0 0 CRE : 3] ( m times )
1 . . . . e e,
A=— : : : : sa; =\ a;,a4,...,05 .
m
a, O 0
0 a, 0
0 0 am
@
The offset vector
ng times \ 7
y T
b=(blab27"')bln) 7b1= biybia""ybi (5)

consists of m constant parts b; each belonging to one of
the non-overlapping range blocks of the original signal.

In order to apply the contraction mapping theorem
at the decoder, the weights or scaling parameters a; are
constrained by the contractivity condition to ensure the
convergence of the iterative reconstruction. This can be
guaranteed if all eigenvalues of the transformation matrix
A lie within the unit circle. In this case the contractivity
constrains the scaling coefficients to fulfill 3"~ , |a;| < m.
For n and ng being integral powers of two the above
constraint may be released to |3~ | a;| < m. For a more
detailed description of the convergence properties of fractal
transforms the reader is referred to [7, 8].
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3. OPTIMIZED FRACTAL ENCODING
The aim of optimal encoding is to determine the scal-
ing and offset parameter a;,b; such that the distance be-
tween the original signal x and the fixed point x; is
minimized. This involves in a first step the calcula-
tion of an optimal m-dimensional subspace F defined by
F={(T~ 4)7'b, b€ R™} of all possible fixed points
x; € F. In a second step the offset vector b is determined
by the orthogonal projection of the original signal x € R"
onto the subspace of fixed points F. Collage coding works
suboptimal in both steps. It neither finds the optimal sub-
space nor the orthogonal projection onto this space.
Therefore an optimization procedure can be carried
out in both steps:

1. Given the non-optimal subspace F* provided by
collage coding, determine a new offset vector b
such that (x — x;) L F*.

2. Modify the subspace F* such that it becomes
optimal or at least locally optimal and determine
new offset vector (described in 1).
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Figure 1. Minimal reconstruction error for given
source vector and various choices of two scaling
parameters a,, a, and least square optimal offset vector b

Optimizing the offset vector b for a given subspace
F* is rather simple. A detailed description of this process
may be found in [9]. But determining an optimal subspace
with reasonable effort is incomparably more difficult. In
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order to provide a lower bound for the minimal achievable
reconstruction error a “full search” in the parameter space
would be necessary. Fortunately the form of the “error
surface” is continuous which simplifies the construction of
a non-full-search encoding scheme. For a typical source
vector the resulting reconstruction error d(x,x;) is dis-
played in fig. 1 for various choices of two scaling param-
eters ay, a, and least square optimal offset vector b.

By calculating the minimal reconstruction error for
a large number of random input vectors according to a
given source model a lower bound for the expected value
E(d(x,x;)) of the mean squared error for a simple unit
variance memoryless Gaussian source can be determined.
Tab. 1 shows the results for “optimal” encoding (optimal
subspace selection and optimal offset) versus collage cod-
ing with and without offset optimization. One can see that

E(d(x,xs)) E(d(x,xy))
cﬁl(:é:,c};{ix)ng opt. collage “optimal"
coding encoding
0414 0.386 0.295

Table 1. Expected value of reconstruction
error for unit variance memoryless Gaussian
sources. The source vector of length n = 6

is partitioned into m = 2 non-overlapping parts.

collage coding results in a significantly larger error com-
pared with optimized collage coding or even with “opti-
mal” encoding. The results obtained by “optimal” encod-
ing constitute a lower bound for the given source model
and the presumed structural constraints of fractal coding
without quantization and cannot be outperformed for this
scheme by any other fractal encoding procedure.

Since real world signals, e.g. images, are in accor-
dance with such a simple source model only up to a certain
degree, it is interesting to investigate the performance of
collage coding in comparison with optimal encoding also
for these sort of signals. For this purpose the former de-
scribed basic fractal coding scheme has been applied to real
world images. In a first step only simple collage coding
has been carried out. Since neither the subspace selection
nor the offset vector is optimal, in a second step a new
optimized offset vector is calculated but the subspace is
retained. Finally the third step consists in optimizing the
subspace together with the offset. Since a full search in
the parameter space of the scaling coefficients is infeasi-
ble for these sources, a modified gradient search has been
employed. It consists in successively optimizing the sin-
gle scaling coefficients until a locally optimal set has been
found. Our experiments showed that in all cases the lo-
cal optimum also equaled the global one. Tab. 2 shows



the results in terms of signal to noise ratio for various test
images. For this experiment the images have been seg-
mented into single square blocks of size n = 16. Each
of these blocks is independently encoded by use of the
former described simple fractal coding scheme with pa-
rameter m = 4.

collage opt. collage | “optimal"

coding coding encoding
lena 29.5 304 31.0
clown 284 292 299
camera 28.1 289 29.5

Table 2. Reconstruction error (signal to noise ratio in dB)
for various test images and encoding schemes without
quantization. Left/centre: Collage coding without/with

offset optimization. Right: “Optimal” encoding scheme.

It can be seen that by employing an optimization step
improvemeats of about 1.5 dB can be achieved. Unfortu-
nately the encoding procedure of fractal schemes is com-
putational very expensive, even if the collage theorem is
applied. So one has to weigh up carefully the additional
gain in reconstruction quality and the more complex opti-
mization of the encoding parameters.

4. CONCLUSION

Due to the structural limitations in the choice of the trans-
formation matrices and the offset vectors in general no ex-
act reconstruction of the input signal can be obtained with
fractal coding schemes even if no quantization is carried
out. In this paper a simple fractal coding scheme is pre-
sented which serves as basis for calculating lower bounds
for the minimal achievable reconstruction error without re-
garding the additional quantization noise.

Determining the optimal encoding parameters is a
non-linear problem for which no simple and exact solu-
tion has been found up to now. An easy method known
as collage coding greatly simplifies this task but achieves
suboptimality only. This paper evaluates the results ob-
tained by collage coding together with those obtained by
an optimal encoding scheme employing a full search in
the parameter space. The full search is of course optimal
but also computational intractable and not suited for any
practical implementation but in this case it provides the ex-
pected value for the lowest achievable reconstruction error
ignoring any quantization.

In order to treat real world images the good-natured
behavior of the reconstruction error has been exploited in

order to construct a fast gradient search which approxi-
mately reaches full-search performance but with a fraction
of its computational effort. The algorithm is based upon
the collage theorem for which our experiments showed that
it provides a good initial guess for the encoding parameters
though it is suboptimal in nature. A subsequent modifica-
tion of the encoding parameters finally leads to the optimal
subspace and offset vector selection.
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