GRAPH-THEORETICAL ANALYSIS OF THE FRACTAL TRANSFORM

Jaroslaw Domaszewicz and Vinay A. Vaishampayan

Department of Electrical Engineering
Texas A&M University
College Station, Texas, 77843, USA
409/847-9068, Fax 409/845-7161
domaszew@eemips.tamu.edu, vinay@ee.tamu.edu

ABSTRACT

A part of a fractal code is an assignment of a domain block
to every range block. The assignment is used to construct
the dependence graph of a fractal code. The vertices of the
graph represent the range blocks. Two vertices z and y are
connected by a directed edge from y to z if the range block
y is overlapped, fully or partially, by the domain block as-
signed to the range block z. An algorithm to analyze the
structure of the dependence graph is presented. The ex-
posed structure of the graph can be used for three different
purposes. The first one is convergence analysis: the affine
transformations linking domain and range blocks can be
classified into those that affect convergence and those that
do not. The second one is decoding time reduction: cer-
tain range blocks can be reconstructed in a non-iterative
way. The third one is improving upon collage coding: the
affine transformations for some range blocks can be opti-
mized based on the domain blocks extracted from the re-
constructed rather than the original image.

1. INTRODUCTION

Fractal transform algorithms [1, 2, 3, 4] present a novel
approach to image compression. A simple fractal transform
works as follows. The original image is partitioned into
non-overlapping square range blocks of size B x B. Also, a
set of domain blocks of size nB X nB is extracted from the
original. Usually a domain block is twice as large as a range
block. Next, the algorithm finds the best matching domain
block for every range block. The domain blocks are not
compared against a range block directly. Rather, for each
domain block, an affine transformation which minimizes the
distortion between the domain block and the target range
block is first determined. The best matching domain block
along with its optimized transformation is assigned to the
target range block. The procedure is repeated for all the
range blocks in the image.

The fractal code is a list of domain blocks and the corre-
sponding transformations, assigned to all the range blocks.
Once a fractal code for the original image has been deter-
mined in the encoder, it is sent to the decoder. The decoder
uses an iterative procedure to obtain the reconstructed im-
age. The reconstructed image is the limit of a sequence of
images generated in the decoder by iteratively applying the
fractal code to an arbitrary initial image.

In this paper we examine how the range blocks depend
on one another through domain blocks. We introduce a con-

2559

cept of the dependence graph of a fractal code, and provide
an algorithm to analyze the graph. The dependence graph
can be constructed for a variety of fractal transforms, in-
cluding ones that use adaptive image partitioning into range
and domain blocks of different sizes. We allow a range block
to be encoded without a domain block, i.e., using the fixed
space only. Also, the graph is independent of the form of a
transformation applied to domain blocks; a transformation
need not be affine.

The structure of the dependence graph, which we ex-
pose, can be used in at least three application areas. The
first one deals with the behavior of a fractal code when
iterated at the decoder. We can classify the affine trans-
formations into those which are responsible for convergence
of the iterated sequence, and those which are irrelevant to
this property. The second application is reducing the de-
coding time: not all of the range blocks have to be decoded
iteratively, some of them can be decoded in a one-step cal-
culation. Finally, one can improve upon collage coding. In
collage coding, the transformations are optimized based on
the domain blocks extracted from the original image. How-
ever, after the decoding, the same transformations act on
the domain blocks extracted from the reconstructed image.
Since the reconstructed image is different from the original
one, collage coding leads to suboptimal codes. By using
the structure of the dependence graph, transformations as-
signed to some range blocks can be optimized based on the
domain blocks extracted from the reconstructed image.

Remarkably, all these different applications are based
on the same properties of the dependence graph.

2. DEPENDENCE GRAPH AND DECODABLE
REGIONS

Assume that a fractal code is given. A part of the fractal
code is an assignment of a domain block to every range
block.

Def. 1 The dependence graph of a fractal code is a directed
graph (R, P) whose set of vertices is the set of all range

blocks R and the set of edges is given by P 2 {{y,z) €
R x R : y is overlapped, fully or partially, by the domain
block assigned to z }.

The dependence graph is illustrated in Fig. 1. We write
yPz, and say that z depends on y, to denote (y,z) € P.
We also use the following notation. If z € R and A C R,

0-7803-2431-5/95 $4.00 © 1995 IEEE

[m] (1)

—
LY

k|1 O ® ® WO

@ ®

Figure 1: The dependence graph. (a) A domain block over-
lapping the range blocks %, j, k, and ! is assigned to the
range block m. (b) The corresponding fragment of the de-
pendence graph.)

then P(z) 2 {y € R : yPz} and P(A) = |J,, P(z). For
example, the set P(A) is the set of all range blocks which
are overlapped by a domain block assigned to any of the
range blocks in the set A.

Def. 2 A non-empty set of range blocks A C R is called a
decodable set if and only if P(A) C A. A set of range blocks
A C R is called a minimal decodable set if it is decodable
and does not contain a proper decodable subset.

A set of range blocks is decodable if all the domain blocks
assigned to the range blocks in the set are totally overlapped
by these range blocks. Hence, if A C R is a decodable
set, one can decode (i.e., find the reconstructed version of)
the range blocks in A without decoding or referencing the
remaining part of the image.

One can show (see also [5]) that if A C R is a minimal
decodable set, and £ € A is such that P(z) # #, then z
belongs to a cycle of vertices from A. If P(z) = @ (ie., =
is encoded using the fixed space only), then {z} itself is a
minimal decodable set.

Assume that a decodable set is given. We now show
how to grow a bigger decodable set, related to the given
one in a special way.

Def. 3 Let A C R. Then N(A) = {z € R : P(z) #
9 and P(z) C A}, and N*(4) = U, N°™(4).

The set N(A) is the set of all range blocks whose as-
signed domain blocks are totally overlapped by the range
blocks in A. Now assume that A is decodable. We imme-
diately have A C N(A). It follows that N(A) is decodable
as well. Also, since N(-) is monotone, we get N°*(A) C
N°("'H)(A) for all » > 0, i.e., the sequence in the defini-
tion is an increasing sequence of decodable sets. Note that
N@)=N*@)=9.

Assume that the part of the reconstructed image sup-
ported by the range blocks in a decodable set A is known. It
is possible to extend the support of the reconstructed part
to N(A) in a one-step (non-iterative) calculation. For each
range block in V(A) (not already in A), it suffices to extract
the reconstructed domain block from the part supported by
A, and to perform the assigned transformation. After de-
coding the range blocks in N(A), it is possible to decode in
one step those in N(N(A)). One can continue this way un-
til all the range blocks in N*(A) have been decoded. Hence

N*(A) is the union of A and the setv of all range blocks
whose reconstructed version can be found non-iteratively
once the reconstructed version of each range block in A is
known.

It can be shown that if A C R is a decodable set, and
z € N*(A)\ A, then z does not belong to a cycle.

3. THE ANALYSIS ALGORITHM

This section introduces an analysis algorithm which ex-
poses the structure of a dependence graph. Assume the
dependence graph of a fractal code is given. As a result of
the algorithm, the set of vertices (i.e., the set of all range
blocks R) is partitioned into a collection of disjoint sets
{Ro, R1,...,Rn}. The number of sets n+1 depends on the
graph being analyzed.

We explain the algorithm in terms of minimizing the de-
coding time at the fractal decoder. As hinted in the previ-
ous section, not all of the range blocks have to be processed
iteratively at the decoder. For example, if A is a decodable
set, then one can perform iterative decoding on A, and find
the reconstructed version of the range blocks in N(A4)\ A
in one step.

Let us explore the limits of this idea. We would like
to decode non-iteratively as many range blocks as possi-
ble. If there are range blocks encoded using the fixed space
only, we decode these first, obviously without iterating. Let
R_1 = {z € R: P(z) = 8} be the set of all such range
blocks. Once the reconstructed version of the range blocks
in R_; is known, we can decode non-iteratively all the range
blocks in N*(R_1), but not others. Hence we define the first
set as Ro = R—1 UN*(R-1).

Some iterative decoding is now necessary. We already
know the reconstructed version of the range blocks in Rq,
so the dependence of other range blocks on these is not crit-
ical. Hence we remove all the vertices in Ro (as well as all
the edges leaving or entering these vertices) from the de-
pendence graph. We have to choose some decodable set of
the modified dependence graph in order to find the recon-
structed version of additional domain blocks. We want the
set to be as small as possible so as to minimize the number
of range blocks decoded iteratively. All range blocks belong-
ing to minimal decodable sets of the modified dependence
graph have to be decoded iteratively. Hence, the union of
all minimal decodable sets of the modified graph is the next
set, R;. Iterative decoding is performed on R;.

After that, non-iterative decoding can be done for all the
range blocks in the set N*(R1)\ R1 (here N*(-) refers to the
modified dependence graph), but not for others. Hence we
set Ry = N*(R1)\ R:1. Non-iterative decoding is performed
on R;. ’

We now remove from the modified graph all the addi-
tional vertices that have been decoded (i.e., R1 URz). Asin
the case of Ry, we set the next set, R3, to be the union of all
minimal decodable sets of the graph thus obtained. (Notice
that some range blocks in R3 must depend on some range
blocks in RoU R1U R;.) Iterative decoding is performed on
Rs.

The range blocks in the set Ry = N*(Rs) \ Rs are
again decoded non-iteratively. We continue this alternat-
ing between iterative and non-iterative decoding, until all

2560

R,—{z€R:P(z)=8}, C—R_y, ne—-1
while (C # R)
n—n+l
if (n even)
Rn. — N‘(Rn-—l) \ Rﬂ—l
remove(R,_1 U Ry,)
else
Rn —{J{A: A € ABMinDec()}
C~CUR,
Ry — Ry UR_,4
return {Ro, Ry,..., Rn}

= O WO NG WN =

-

Figure 2: The analysis algorithm

the range blocks have been classified and decoded.

We call the odd-numbered sets (Ri, Ra, etc.) the looped
sets, and the even-numbered ones the straight sets. Com-
bining the observations made in the previous section, we
conclude that the set of all range blocks decoded iteratively,
U oaa R, is equal to the set of all range blocks that belong
to a cycle. Similarly, the set of all range blocks decoded
in a single step, U‘. cven Bis is equal to the set of all range
blocks that do not belong to a cycle.

The analysis algorithm is presented in Fig. 2. The algo-
rithm AliMinDec() returns the collection of all minimal de-
codable sets of a graph (see the Appendix). The operation
remove(A) removes from a graph all vertices contained in A,
as well as all edges leaving or entering these vertices. Note
that the operations like AlIMinDec() or N(-) act mostly on
the modified graphs, which are different from the original
dependence graph due to vertex removal. For simplicity,
this is not directly indicated in the notation. A contrived
graph and the results of running the algorithm with the
graph as the input are presented in Fig. 3.

The analysis algorithm has been implemented. For a
simple fractal transform and the “Lena” image, there are
four sets—R1, Rz, Rs, and Rs. They contain 2800, 1280,
4, and 12 range blocks, respectively.

4. APPLICATIONS

4.1. Speeding-up the Fractal Decoder

The possibility of speeding up the decoding process due to
the structure of the dependence graph is explained in the
previous sections. Note that a fractal code restricted to each
looped set specifies a dynamical system. Sample values in
the range blocks from the set form the state of the system.
However, while for R; the dynamical system is autonomous,
the systems corresponding to Ri, Rs, etc., have “inputs”
(sample values in some range blocks in the lower-numbered
sets). The decoding algorithm proposed in this paper has
an additional advantage that these dynamical systems are
iterated only after their inputs have been made constant.
This is not the case in the standard decoder.

To achieve further speedup, one should break down the
iterative decoding of a looped set into a sequence of steps.
Each step should consist of the iterative decoding of a sin-
gle minimal decodable set contained in the looped set. This

Figure 3: A graph whose set of vertices has been partitioned
by the analysis algorithm. A vertex with an index n belongs
to R,

is because a fractal code, when iterated on different mini-
mal decodable sets, may produce sequences converging at
different rates.

Obviously, the penalty for the decoder speedup is some
bit rate overhead which is needed to add a description of
the structure of the dependence graph to a fractal code.

4.2. Convergence Analysis

The traditional decoder generates a sequence of images by
iterating a fractal code. One can easily see that convergence
of the sequence depends solely on the parameters of the
affine transformations associated with the range blocks from
the looped sets. Moreover, the interaction between the pa-
rameters is limited to a single minimal decodable set. The
parameters corresponding to the range blocks from straight
sets do not affect convergence in any way. For example, one
can use arbitrary values for the scaling coefficient and still
obtain a fractal transform which behaves like a contractive
map. The exposed structure of the dependence graph seems
to be a natural and fundamental concept for understanding
convergence properties.

4.3. A New Encoding Algorithm

Finally, one can use the graph-theoretical approach to im-
prove upon collage coding. We briefly describe the new en-
coding procedure, which we call the re-encoding algorithm.
An initial fractal code is obtained using collage coding. For
simplicity assume that every range block has an associated
domain block, i.e., Rg = #. One then executes the anal-
ysis algorithm to partition the set of range blocks. Next,
iterative decoding is performed on the decodable set R;.
This way we know the reconstructed versions of the domain
blocks covered by the range blocks in R;. Range blocks

2561

in Rz are now re-encoded (i.e., the affine transformations
are re-optimized) using the reconstructed versions of the
domain blocks. We continue alternating iterative decoding
and re-encoding. As a result, all range blocks in the straight
sets are re-encoded. Preliminary results for the re-encoding
algorithm have been obtained. For a simple fractal trans-
form algorithm and the “Lena” image, a slight improvement
of PSNR from 26.99 to 27.20dB is observed.

5. SUMMARY

A concept of the dependence graph of a fractal code is intro-
duced. The graph reflects how domain blocks are assigned
to range blocks. Partitioning the set of range blocks ac-
cording to the structure of the dependence graph helps un-
derstand convergence properties and improve the existing
encoding and decoding algorithms.

6. APPENDIX

In the Appendix, we consider an efficient implementation
of the analysis algorithm. The only non-trivial operation is
AllMinDec(). We begin by characterizing the sets returned
by AllMinDec().

First, we want to generally describe the results of the
analysis algorithm in terms of strongly connected compo-
nents (see [6]) of the dependence graph. The following result
is easy once we realize that all elements of a strongly con-
nected component which contains more than one element
belong to a cycle.

Lemma 1 U'. even i 18 the union of all strongly connected
components which contain exactly one element, and the el-
ement does not have a self-loop. U‘, odq B 18 the union of
all strongly connected components which either contain two
or more elements, or contain ezactly one element, and the
element has a self-loop.

The next lemma establishes a simple relationship be-
tween minimal decodable sets and strongly connected com-
ponents.

Lemma 2 A set A C R is minimal decodable, if and only
if it is decodable, and it is a strongly connected component
of the dependence graph.

Proof. => Let A be minimal decodable. Pick z € A,
and let B = {y € A : zis reachable from y}. Note that
z € B, so B is non-empty. Pick y € B, and let z € P(y).
The set A is decodable, so z € A. Since y is reachable from
z, and z is reachable from y, we conclude that z is reach-
able from z. Hence z € B, and so B is decodable. Since
A is minimal decodable, we have B = A. The element z
was chosen arbitrarily, and so any two elements in A are
mutually reachable. Hence A is a subset of some strongly
connected component C. Since A is decodable, any element
in A is not reachable from any element in C \ A. Hence we
must have C = A, and A is a strongly connected compo-
nent. <= Let B C A be a decodable subset of A. Then any
element in B is not reachable from any element in 4 \ B.
Since A is a strongly connected component, we must have
A\ B =0, and so A is minimal decodable. O

Assume that a graph is given, and let C1,C3,...,Ck be
some of the strongly connected components of the graph.
Assume that the operation remove(C; UC, U---U Cg) has
been performed on the graph. Let Cx4; be a strongly con-
nected component of the modified graph. Then Cx41 is
also a strongly connected component of the original graph.
This observation, along with Lemma 1 and Lemma 2, leads
to the following characterization of the sets returned by
AllMinDec().

Lemma 3 Let A be a set calculated in step 8 of the anal-
ysis algorithm (i.e., a minimal decodable set of a modified
dependence graph). Then A is a strongly connected compo-
nent of the original dependence graph.

The analysis algorithm can now be efficiently imple-
mented as follows. First, we use any standard algorithm
to find all the strongly connected components of the depen-
dence graph. For each strongly connected component, we
use Lemma 1 to determine whether it belongs to a straight
set or a looped set. Second, we find the component graph
(i-e., the graph in which there is one vertex for each strongly
connected component of the original graph). Finally, we run
a simplified analysis algorithm on the component graph. In
the simplified algorithm, the operation N*(-) accumulates
only those components that belong to straight sets in the
original dependence graph. Since the component graph is
acyclic, the operation AllMinDec() reduces to finding all
vertices z such that P(z) = #. In the simplified analysis
algorithm, all steps are quite simple.

7. REFERENCES

(1] Arnaud E. Jacquin. Fractal image coding: A review.
Proceedings of the IEEE, 81(10):1451-1465, October
1993.

[2] Yuval Fisher, editor. Fractal Image Compression.
Springer-Verlag, New York, 1995.

[3] Skjalg Lepsgy, Geir E. @ien, and Tor A. Ramstad. At-
tractor image compression with a fast non-iterative de-
coding algorithm. In Proc. ICASSP’93, pages V-337 -
V-340, 1993.

(4] Bernd Hiirtgen and Thomas Hain. On the convergence
of fractal transforms. In Proc. ICASSP’94, pages V-561
- V-564, 1994.

[5] Jaroslaw Domaszewicz. Encoding Algorithms for Fractal
Compression. PhD thesis, Texas A&M University, to be
published.

[6] Thomas H. Cormen, Charles E. Leiserson, and
Ronald L. Rivest. Introduction to Algorithms. The MIT
Press, Cambridge, MA, 1990.

2562

