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ABSTRACT

SVEX is a multilevel knowiedge-based tool for
developing applications in image segmentation. Both
numerical and symbolic computations take place at each
level, being the transition between these two domains
defined by the computational structure itself. SVEX
incorporates evidence combination [Stra-92] and
uncertainty control mechanisms. SVEX is programmed
by means of a specific purpose declarative language
based on a reduced set of objects. All the knowledge
involved in the solution of a given segmentation problem
is made explicit due to the declarative nature of the
programming language [Nazi-84]. The results obtained
by the application of SVEX in the segmentation of a set
of outdoor images set are also shown in this article.

1. LEVELS OF ORGANIZATION AND SYSTEM
ARCHITECTURE

SVEX is a multilevel knowledge-based tool for
developing applications in image segmentation
programmed by means of a specific purpose declarative
language. SVEX is made up of two levels, characterized
by the nature of the ‘information grain" that is
numerically and symbolically described within each of
them. These units are the pixels at the lower level and
the segments (aggregations of pixels) at the upper level.
The control of both levels is goal-oriented, so that
computational processes are started by the reception of
a computation request from an upper level. Accordingly,
data flows in two directions across each level. In a first
top-down processing, upper level requests are received
and transformed into the corresponding commands for
satisfying them. In the opposite bottom-up direction,
each level processes data coming from lower level,
transforms them and sends results to the upper level. For
the processing of both data flows, each level has a TD
unit (for control, planning and decoding) and a BU unit
(for diagnosis, codification or abstraction).

Each level can be seen as a machine (BU-TD
module) that interacts with a certain "virtual world."
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This interaction is performed with the aid of real or
"virtual" sensors and actuators, depending on this world
being the physical world or the world built by the lower
level. This organization permits, on one hand, to provide
aclearly defined and scalable computational structure (in
terms of the complexity of the problem to be solved)
and, on the other, to keep the same organization inside
each level.
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Figure 1. BU-TD Module.

2. DESCRIPTION OF THE LEVELS
2.1. Pixel Processor

Starting from the source image, the first level of
SVEX, the Pixel Processor [Mend-94], produces
diagnostic maps in terms of membership degrees of each
pixel to certain symbolic classes. The BU unit receives
images as input data from camera sensors and produces
symbolic diagnostic images as output data. The TD unit
receives requests for computing pixel diagnoses and
transforms these requests into execution orders addressed
to the BU unit and control commands directed to the
image acquisition controllers.

At the pixel level, the numerical representation
consists of feature maps (gradient, color, . . .) obtained
using image processing algorithms. The symbolic
representation handles symbolic images or maps
("HighGradientPixel", "GreenPixel", . . .) [Wils-88]
generated from features using fuzzy symbolization

0-7803-2431-5/95 $4.00 © 1995 IEEE



processes that include evidence combination [Stra-92]
and uncertainty control.

The programming language objects used at this
level are shown in Figure 2. The object Picture identifies
the input image. Feature objects are image features
obtained from the image or from other features by the
application of image analysis procedures (object
Procedure). Objects of type Class are symbolic images
over which logical conditions can be imposed to define
other classes by means of Rule objects. Finally, the
object Interface (not included in Figure 2) contains the
names of the classes that are accessible from upper
levels.
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Figure 2. Pixel Processor’s image types (inside
boxes) and their possible transformation by
means of operators (over arrows).

The classifiers (object Classifier) carry out the
transformation of a numerical description into another of
symbolic nature by means of two consecutive processes.
The first process defines the features that are used and
how they are combined (lineally, quadratically) to
generate a descriptor. The second process maps the value
of the descriptor into a fuzzy logic range [0-100]
according to a certain decision function model (sigmoid,
threshold, exponential, . . .).
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2.2 Segment Processor

The second level of SVEX is conceived around
the Segment Processor. The output of this level is an
image  partition formed by segments (connected
aggregation of pixels defined by shape and/or property
criteria) along with their corresponding assignment to
symbolic segment classes, their spatial localizers and the
spatial relations among neighbors. The BU unit receives
data pixel diagnostic maps (pixel classes), previously
requested by the TD unit to the Pixel Processor, and
produces symbolic diagnoses for the segments of the
partition. The TD unit receives diagnostic requests about
segments, and transforms these requests into sequences
of commands for the BU unit and into requests for pixel
diagnostics directed to the Pixel Processor.
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Figure 3. Segment Processor’s data types (inside
boxes) and their possible transformation by
means of operators (over arrows).

The Segment Processor imposes two specific
requirements. The first one, the need for a definition of
the segments from the pixel maps, is met by means of
the presegmenter action, which generates the initial
image partition (Figure 3). The second one is the
desirability of having a refinement or control mechanism
over the partition. For this purpose the control actions
make possible the modification of the spatial definition of
the segments using different operations (merge, split,
include, . . .).



From the point of view of functionality, the
Segment Processor’s architecture is organized around
three blocks. The first one is the presegmenter,
conceived as an interchangeable part within the BU unit
(currently an adaptation of the Watershed transform
[Vinc-911). The second block has the goal of computing
the segment diagnoses, and is structured, as in the Pixel
Processor, by the distinction between a numerical
domain, where the segments are described by features,
and another symbolic domain based on classes. The third
functional block is located at the TD unit and manages
the diagnostics requests received by the Segment
Processor as well as the partition control.

The objects used in the programming of the
Segment Processor are shown in Figure 3. The
S_MakePartition object controls the presegmenter action.
S_Procedure, S_Classifier, S_Class and S_Rule objects
are equivalent to their homonyms in the Pixel Processor,
but being now applied to segments instead of pixels. The
S_Condition object permits to express premises for the
rules that may include spatial relations (below, left,
contains, . . .). S _CirlRuleSet, S_CtrlRule and
S_CtrlAction objects can be used to define control actions
over the partition. The S Interface object determines
which segment diagnoses are visible to the upper level
(typically an user-provided program module) and the
P_Interface object indicates which pixel classes are to be
requested to the Pixel Processor.

Figure 4. Source image A.

1gure S. ource image B
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3. APPLICATION

The pictures shown in figures 4-12 illustrate
SVEX’s results in the segmentation of two outdoor
images. Both images have been processed with the same
programs set, without computing complex or high
computational cost features.

The pictures include for each example the
source image (figures 4 and 5), the final partition
obtained by means of refinement of the initial partition
(figures 6 and 7), and a selection of some segment
classes from this final partition, which are depicted as
white areas overlapped to the gradient map.

4. CONCLUSIONS

SVEX proposes a scalable multilevel
computational structure that allows both numerical and
symbolic computations to take place at each level. The
computational structure itself defines the transition
between the numerical and symbolic domains clearly
and consistently. Conceived as a tool, SVEX
programming language permits a fast and flexible
development of applications, making easier its

maintenance. The result is an open system that can be
easily adapted to a great variety of segmentation
problems.

Figure 6. Final partition (A).



Figure 10. Window class (A).
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Figure 7. Final partition (B).
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Figure 12. Road class (A).

Vincent L., Soille P., "Watersheds in
Digital Spaces: An efficient algorithm
based on immersion simulations”.
IEEE Trans. on Pattern Anal. and
Mach. Intell., Vol 13, n° 6, pp. 583-
598, 1991.

Wilson R., "Is Vision a Pattern
Recognition Problem?", in "Pattern
Recognition”, Ed. J. Kitller (Ed), 1-
25, Springer-Verlag, 1988.



