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ABSTRACT

An algorithm for classification task dependent multi-
scale feature extraction is suggested. The algorithm fo-
cuses on dimensionality reduction of the feature space
subject to maximum preservation of classification in-
formation. It has been shown that, for classification
tasks, class separability based features are appropri-
ate alternatives to features selected based on energy
and entropy criteria. Application of this idea to fea-
ture extraction from multi-scale wavelet packets is pre-
sented. At each level of decomposition an optimal lin-
ear transform that preserves class separabilities and
results in a reduced dimensional feature space is ob-
tained. Classification and feature extraction is per-
formed at each scale and resulting ”soft decisions” are
integrated across scales. The suggested scheme can also
be applied to other orthogonal or non-orthogonal mul-
tiscale transforms e.g. local cosine transform or Gabor
transform. The suggested algorithm has been tested
on classification and segmentation of some radar target
signatures as well as textured and document images.

1. INTRODUCTION

The observation about the economy of clues in human’s
recognition, and the fact that classification systems
with small number of parameters have better gener-
alization, are computationally more cost effective and
can be trained and adapted at higher speeds, are moti-
vations for dimensionality reduction techniques. Thus,
it is usually advantageous to sacrifice some informa-
tion in order to keep the number of system parameters
to a minimum. With this observation and also mo-
tivated by the success of wavelet based classification
[1}{2]{3] systems and their biological plausibility, this
paper addresses the optimal extraction of small sized
feature sets from a tree structured wavelet packet de-
composition of signals. The multi-scale dimensionality

The support of this research by the Advanced Research
Projects Agency (ARPA Order No. A550), under contract MDA
9049-3C-7217, is greatfully acknowledged.

2547

reduction idea can be used for both orthogonal and
non-orthogonal library of local basis functions e.g. lo-
cal Sine/Cosine functions, Gabor functions and even
composite and redundant libraries of basis. It can also
applied to other tasks e.g. classification of acoustic
transients and biomedical and satellite images. The
approach focuses on the exploitation of class specific
differences obtained through inspection of a pre-defined
class-separation {4] attainable from the wavelet packet
tree and to find a linear map that provides the small-
est set of features relative to which the given collection
of signals shows the largest class separability. This in
turn results in simple and efficient classification.

After multi-scale (e.g. wavelet or Gabor based) fea-
ture vectors are computed at each scale, the algorithm
for dimensionality reduction can be applied either to
each scale separately or to all of them together. The
resulting feature vectors are used in a multi-resolution
classification scheme where soft decisions made at dif-
ferent scales are combined to provide more confident
results. The general non-linear mapping capability of
multi-layer neural networks can be utilized to approx-
imate membership functions by adjusting the network
parameters to form the desired soft decision bound-
aries between clusters. Resulting soft classifiers are
used in the multi-scale context dependent classifica-
tion/segmentation system. In segmentation experiments
soft decisions on a context area around each block are
also incorporated in the voting process. The final de-
cision is based on the majority of accumulated votes.
Detailed description of this method is given in [6].

2. WAVELET PACKET BASED SIGNAL
REPRESENTATIONS

The optimal representation of signals in time-frequency
plane (or the so called Phase Plane[7]) is an active area
of research, where the optimality is a task dependent
issue. In most time-frequency decompositions, signals
are projected onto a set of waveforms or time-frequency
atoms [7]. A general family of time-frequency atoms
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can be generated by scaling, translating and modulat-
ing a single window function g(t) € L%(R), where g(t)
is a real, continuously differentiable and O(z47) func-
tion satisfying:

gl =1; and ] o(t) £0; and g(0) #0; (1)

Therefore any element of the dictionary is of the
form:

(1) = 52yl @

and can be identified by the triple ¥y = (s5,£,u) € T =

(R* x Rz); where s, £ and u represent scaling, modula-
tion and translation parameters respectively [7]. These
waveforms form a dictionary D = {g,(t) : ¥ € T} of
basis which may or may not be orthogonal or even com-
plete and may or may not have a tree structure. The
waveforms {g,} must be selected adaptively based
on the local properties of desired signals, so that the
expansion coefficients provide the desired information
most “efficiently”.

Wavelet transforms and their generalization, called
wavelet packets [1], are examples of tree structured lo-
cal basis which provide signal analysis through smooth
partitioning of the frequency axis. Wavelet packet anal-
ysis corresponds algorithmically to adaptive multi-rate
filtering schemes and are numerically as fast as the
FFT algorithms [1]. In designing wavelet packet trees,
one either starts from the most refined sub-space de-
composition and moves upward in the tree by merging
“adjacent” nodes “appropriately”, or starts from the
root and performs iterative decomposition at each node
to its subspaces if it is “appropriate”. Depending on
the task, the ”"appropriate” decision about further de-
composition of subbands/nodes can be made based on
different criteria. Decomposition toward maximizing
“entropy” [1] or energy compaction, minimizing rate-
distortion function or maximizing class separation [5],
and also decomposition of subbands with dominant en-
ergies are some of suggested criteria [3,4]. In classifica-
tion tasks, one may observe relatively high energy sub-
bands on which the desired signals are quite similar and
subbands of relatively low average energy that contain
significant information about the differences between
the signals, so class separability criteria seems to be
a sensible choice. The tree structure obtained based
on class separability may not be optimal or even sub-
optimal for representing or approximating individual
signals and it does not even need to provide a “com-
plete basis”.

3. DIMENSIONALITY REDUCTION

In order to design a simple and efficient classification
and segmentation scheme one has to select features that
are most effective in showing the salient differences be-
tween the signals. This selection may or may not be
appropriate for other tasks such as approximation or
compression. In other words the selection must give
the best minimal set of features in terms of the separa-
bility of signal clusters in the feature space. Examples
of quantitative measures of class separability are Bayes
error, Bhattacharya distance, divergence based or vari-
ational distribution distances and scatter matrix based
measures [4].

Unlike Mean Square Error(MSE) which is the most
widely used criterion for signal representation, class
separability measures are typically invariant under any
non-singular, linear or non-linear, transformation. How-
ever any non-singular mapping used for dimensional-
ity reduction results in losing some of classification in-
formation. Our objective is to find the mapping that
for a given reduction in space dimension provides the
maximum class-separability. In other words we are
searching among all possible singular transformations
for the best subspace which preserves class-separations
as much as possible in the lowest possible dimensional
space. A simplified and yet elegant way of formulat-
ing criteria of class separability is based on within and
between class scatter matrices' which are used widely
in discriminant analysis of statistics. The Within-class
Scatter Matrix shows the scatter of sample vectors (V)
of different class around their respective mean/expected
vectors M,

L
Su = Y Pr{C=Ci}% (3)
i=1
where &; = E[(V - Mi)(V - M)T|C}]

The Between-class Scatter Matrix shows the scatter of
the conditional mean vectors M;’s around the overall
mean vector M.

L
Sp =Y Pr{C=C}M - M;)(M - M;)T  (4)
i=1
In order to have good separability for classification one
needs to have “large” between-class scatter and small
within class scatters simultaneously. There are several
ways of defining a positive function as a measure of this
combined separability criterion such as,

J1 tr(Sy 1 Sh) (5)
Jo = In|Sy, 1S (6)
In our experiments J; is used but the same results

hold for J,. We denote the objective function com-
puted over subspace V as Jy.
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So we are seeking a linear transformation A from
R to R™ with m < n such that.

A:XCR® - YCR™ (7)
mina{Jx — Jarx}

so A optimizes Jy, i.e. minimizes the drop in cost
Jx — Jarx incurred by the reduction in the feature
space dimensionality. It can be shown that for such an
optimum A;

Prirc¥Yi=1.,m,i=1.,n (8

This observation and the fact that

Jy =tr(8¥) = i XY, 9)

i=1

suggest that one can maximize (or minimize) Jy by
taking the largest(or smallest) m eigenvalues of SX.
Thus the corresponding eigenvectors form the trans-
formation matrix A. In other words the optimal lin-
ear transformation from R® to R™ based on our se-
lected separation measure results from projecting the
feature vectors X onto m eigenvectors corresponding to
the m-largest eigenvalues of the separation matrix SX .
These optimal vectors/direction can be obtained from
a rich enough training set and can be updated in time
if needed. Note that the dimensionality m of resulting
feature vectors is

rank(S) = min(n, L — 1) (10)

or less, where L is the number of classes in our training
set.

If the input signal representation has been obtained
through linear operations or “projections” {7] one can
absorb the matrix A into those operations. For ex-
ample if projections of signals onto a set of multiscale
“templates” {¢;,7 = 1,..,n} are used, then application
of A to those templates, {AT¢;,i = 1,..,m < n} pro-
vides few number of “composite waveforms” on which
the projections of input signals show the largest differ-
ences i.e.

V =
U =

{vi} = {<s,¢i >} (11)
{u;} = AV = {Av;} = {< s, A¢; >} (12)

The original library of multi-scale basis can be a re-
dundant dictionary composed of several wavelet packet
basis, Local Sine/Cosine functions or family of Gabor
functions. Also “composite” waveforms generated us-
ing this method are task dependent and do not in gen-
eral have any specific structure like wavelet tree struc-
ture. They can be stored as a set of multi-scale signal

Figure 1: Example of radar target signatures for five differ-
ent classes of objects (left), biases added for clarification,
and separated clusters in the selected feature space (right).

templates/vectors to be used in signal projection and
feature computation processes.

For example if a set of Gabor functions ® with index
set I' is used as the starting dictionary of basis

e:cp(—u) cos(2m f(t — d)) (13)

d
20
{30, T={7}={(s,f,d)} (14)

and features are computed based on inner products
or projections then a small set of multiscale templates
for classification can be obtained based on linear com-
binations of Gabor wavelets according to rows of the
matrix A. Resulting composite templates may not be
symmetric and may not resemble any known local ba-
sis.

é(a,1,d)
d =

4. EXPERIMENTS

To show the effectiveness of the suggested feature ex-
traction, it is applied to image texture classification and
segmentation as well as classification of radar target
signatures. Both balanced and pruned wavelet packet
trees are used in these tests. On each subband/node
second and third central moments p9 and pg are con-
sidered as feature elements. For texture classification
and segmentation tests these moments are computed
over small windows on the decomposed image.

Figure 1, shows the separated clusters for five classes
of radar targets where only the two most important
features are used. Figure 2, compares the cluster sep-
arations in the feature space when the feature vectors
are selected using the suggested class separability based
linear map or energy based approaches. The distance
between clusters allows us to have good classification
results even in the presence of small noise. In both
tests simple neural networks is used as “soft classifier”.
These networks have 2 input, 3 hidden and 3 or 5 out-
put units for five classes of targets or three classes of
textures respectively. Results shows only 0% to 2%
misclassification.

The task of signal segmentation is more involved
than classification. The window size W should be large
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Figure 2: Clusters in the feature space for three textures.
Features obtained from separability based method (top)
and features obtained from highest energy subbands (bot-
tom).

enough to cover spatial variations that characterize the
difference between signals but small enough so that it
can have a good temporal/spatial localization. Because
of the down sampling involved in the transform the cor-
responding window sizes on sub-bands at the k** level
of the tree are W/(2¥). Therefore the depth of the tree
is limited by the size of input window and the nature
of the signals to be classified. Also the order of the
filters in filter bank implementations should be smaller
than window size to avoid the dominance of the win-
dow boundary effects on the resulting feature compu-
tation. Therefore for segmentation tasks filters with
smaller number of taps are preferred. Choosing small
size windows for good localization results in higher clas-
sification errors. So in order to improve the final per-
formance additional techniques are needed. Figure 3.
shows the segmentation results for the same three tex-
tures; where window size of 16 x 16 pixels, with 8
pixel overlaps, is chosen and decision integration is used
[6]. Also Figure 4. shows an application of suggested
scheme to document page segmentation where text and
pictures are treated as two different textures.

5. RESULTS AND DISCUSSION

A method for efficient classification of a variety of 1D
and 2D signals such as radar signatures and textured
and document images has been suggested. The idea of
applying dimensionality reduction from linear discrim-
inant analysis to multi-scale feature spaces is suggested
and studied. The method is tested on wavelet packet
based features. Also very good segmentation results

Figure 3: Example of a texture segmentation using the re-
duced two dimensional feature space.

Figure 4: Example of a document page segmentation using
our texture based approach.

with small number of features are reported. The results
obtained in several signal and image classification tests
show that multi-scale separation based feature extrac-
tion is an appropriate general framework which pro-
vides good results using simple feature sets and classi-
fiers. Also suggestions on extensions of these ideas to
libraries of redundant and non-orthogonal local basis
are given.
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