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ABSTRACT

We present real-time algorithms for the segmentation
of binary images modeled by Markov Mesh Random
Fields (MMRF’s) and corrupted by independent noise.
The goal is to find a recursive algorithm to compute
the MAP estimate of each pixel of the scene using a
fixed lookahead of D rows and D columns of the ob-
servations. The optimal algorithm for this is compu-
tationally expensive. Using both hard and soft (condi-
tional) decision feedback, the complexity is reducedina
principled manner to allow a performance/complexity
tradeoff. Simulation results demonstrate the viability
of the algorithm and it’s subjective relevance to the
image segmentation problem.

I. INTRODUCTION

Consider the observation of an L x L lattice scene
X in additive white noise V (known distribution func-
tion), the observations given by Y = X+V. The goalis
to compute MAP estimates of the pixels of X. When we
are interested in discrete features in the scene, the prob-
lem is one of segmentation. The segmentation problem
is of significance in SAR imaging, medical imaging and
military applications such as infrared imaging for de-
tection of targets.

Previous approaches to this problem use one of two
major stochastic models for the scene. One is via the
use of Gibbs priors which entails the use of stochas-
tic relaxation for the resulting optimization problem
- this method was pioneered by Geman and Geman
[1]. The use of relaxation renders this approach com-
putationally intensive. The other is based on model-
ing the scene as discrete-valued with spatial interac-
tions being specified in terms of transition probabili-
ties of a Markov Mesh Random Field (MMRF). The
posterior probability mass function is then computed
for each pixel and the MAP estimate is computed by
finding the maximum of a finite set. Well-known exam-
ples of this method are those of Derin et al {2] (fixed-
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interval smoothing) and Devijver [3] (recursive filter-
ing and fixed-lag smoothing with lookahead of one row
and one column). The methods in [2] involve mul-
tiple passes over the image thus requiring significant
amounts of storage and computation while that in [3]
requires large amounts of computation for large lags.

We propose an approach using a MMRF scene
model and the concept of information states in recur-
sive estimation [4] to compute fixed-lag recursive esti-
mates of the scene pixels. The dimension of the in-
formation state is exponential in the lag and hence we
propose the use of both hard and soft decision feed-
back (DF) [5] to allow large lags while maintaining the
computational requirement at affordable levels. The re-
sult is a viable real-time segmentation algorithm called
the Bayesian Conditional Decision Feedback (BCDF)
algorithm that allows the user to choose the perfor-
mance/complexity tradeoff.

II. PROBLEM STATEMENT AND
ASSUMPTIONS

All random fields considered are finite L x L lat-
tices.
o The scene X (pixels take on values in a known set
Q= {1,2,---,M}) obeys a third-order MMRF model
[6] with known transition probabilities. The spatial
causality of the MMRF model is necessary to allow a
recursive structure for our algorithm. We recall

Definition 1: Let X(mn) = {z¢j) : (= 1,...,m—
1)or(j = 1,...,n—1)}. Then, a third order Markov
Mesh Random Field is defined by the property

P(x(m,n)/x(m,n)) =
P(Z(mn)/ T(m,n—1) E(m=1,n-1) T(m—1,n))

with appropriate boundary conditions.

e The noise field V is white and independent of X with
v,y ~ f(v) = N(0,07).

e The observation is Y = X + V. We now refer to
fig. 1(a) where the data set, the global and local state
vectors and their partitions are shown for self-evident
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definitions. Qur goal is: Given the above observation
model, find a recursive algorithm to compute,

max P(z(m-D n— D)/Y(m n))

&m-Dn-D) = 8 e pon 1)
D>1 (1)

i.e., the D x D (D row D column)-lag MAP estimate
of the pizel (m n).

Proposition 1 specifies the information state ®(,, 1)
in the optimal algorithm and propositions 2 and 3 spec-
ify the reduced dimension pseundo-information states in
the suboptimal algorithms.

Proposition 1: The information state for estimating
é("‘l—D,n—D) is Q(m,n) = p(sgm,n) /Y(m,n)) and its
dimension is MP(P+1)+(m-D-1)

Using the MMRF property, the independent noise model
and Bayes’ rule, a recursion can be written for ®(,, n)
as follows:

(S(m 3 /Y (mn) ) x f(y(mn) /< C(m,n) )--
E p(c(m n) /S(m n-1) )p(s(m n-1) /Y(m n-1) )( )
2
where a = {¢{,,_p_; n) +€(m.n-p)}- Thus the dimen-
sion increases as we progress across rows due to the
presence of c( meD=1,n) ° Now, consider

Approzimation A: At each sile (m,n), all the past de-
cistons :2-(1'1), :E(1 L)t z(m—D 1,1)°
L(m-D-1,L,) * s &(m-D,1) " rz(m-D n—-D- 1) are cor-
rect.

- A . R
Let T(m,n) = {&#m-D-1,n)) "> E(m-D~1,L,)>

-i'(m—D,l): Tt i(m-—D,n—D)}-

Proposition 2: In view of approximation A, the pseudo-

information state is

#,. = {r(s Yinm ), T d its di-
mn) = 12 (Stmn) /Y (mn) ) T(m,nyy and its di

mension is MP(P+1),

However, the dimension can still be large for large D.
We now introduce another approximation based on par-
titioning the “local” state vector S(,; ») as shown in

fig. l(b) Here S(m n) 182 J' x J array of pixels where
0<J <(D+1),0<J<D. (J',J)is called the chip
size. Now for z(; ;) € S(“m,n) , let Z(; j)/(m,n) denote the
conditional MAP estimate

2(5.i)/(m,m) = arg Maxp (Z(-',j)/ S{nny + Y(mm) )

Also, let S, = {Z(i,5)/(m,m) : 2(i,j) € SGam) }-
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Approzimation B: At each site (m,n) the past condi-
tional decisions S( mn—1) (conditioned on S(mn 1 )
are correct.

In other words, we assume S(_m n—1) is conditiona.lly de-
terministic given S(m n=1) and Y(m n_1) (i.e., S(m n=1)

is {S} Y(m,n-1) } measurable). Then,

(min-1)?
Proposition 3: Assume approximations A and B hold.
Then, the pseudo-information state is given by iz‘nﬁ n) =
{p(S?’m,n) [Y(mny ), §E’m,n) ,’i‘(m',,) } and its dimension
is (D(D +1) = J' J)MP+1+7'(J-1),

This pseudo-information state 'It“nﬁn) forms the core
of the BCDF algorithm. Note the successive reduction
in the dimension of the information state. Following
approximations A and B, the dimension is partially de-
coupled from the lag D. This is one of the principal
features of the BCDF algorithm. The recursion for
QZ“B") proceeds as follows!. Similar to (2), compute

(3) as given below:

(S(m n—1) 1 C(m,n) /Y(m ﬂ)) x f(y(m n) /c(m n))
p(c(m n) /S(m n-1 ))p(s(m n—1) /Y(m n—l))

3)
Then
P(Sz-m,n) /Y(m,n) Y=
E p(SFm.n—l) 1 €m,n) [Y(m,n)) (4)
cte-
Further,

p(s(t"yﬂ) ’c(_m,n) /Y(m,n) ) =
Zp(sz.m,n—l) » C(m,n) /Y(m,n) ) (5)

+
c.l

The computation of p(z(i ;1/Y(m,n) ’Sz.m,n) ) 2(i.j) €
S-

(mn) a0 be broken down into cases as

P,/ Y(mn) » Sim, n) )
x Zc" p(S(mn -1) (m n) [Y(mn))s 2G4) € c}
S Ec- P8y 1Sy [ Y(mm) ), 2y € €7

(Z(EG.iy1mn-1) = 2(6.5)"

3Pt
Ec” p(Sz‘m,n-—l) ’c?-m,n) /Y(mx") ))

Z(i.) € S(mpn-1) \ ¢(mn-D)

+ 1For iompactness and notational simpliciiy, we have denoted:
€] = Conn-ny €T = Cluny » €7 = €l \ {z¢i,nh
cT = c(‘m,”) and €~ = C(_m'") \ {r(;’j)}.



The conditional estimates are obtained from
£ 73/(myn) = 318 MAXP(E(i5)/ Y (mm) Sy ) (6)
Finally, compute

P(&(m-Dn-D) [Y(mn)) =
Z(%(m-D,n-D)/(mn-1) = E(m-D

o-0)) (1)
! p(sz-m.ﬂ—l) ’c-(+m,n) /Y(m,n) ))

where v = {cf,SZ’m’n) } The desired fixed-lag esti-

mate #(m-p,n-p) is obtained using (7) in (1).

The algorithm is initialized by quantizing the first
row and column observations and specifying ‘I‘(ADB+2,1)-
The recursion is restarted at each row. Termination is
accomplished by tapering the lag to zero as the bound-
ary is approached.

III. SIMULATIONS

The BCDF algorithm was applied to a number of
synthetic binary images and real images to test its var-
jous aspects. The signal-to-noise ratio is defined as
SNR = ]Q%I—‘l Fig. 2 shows one result where the al-
gorithm is applied to the segmentation of a synthetic
image. Fig. 3 shows the segmentation of a plane from
a noisy image. For purposes of illustration, the original
image was quantized into two levels and the transition
probabilitics were calculated using a relative frequency
approach from this bilevel image. The results demon-
strate that the algorithm achieves the desired objective,
i.e., labeling of the pixels to separate the desired fea-
ture from the background.

IV. ALGORITHM FEATURES

o The BCDF algorithm is pixel-wise recursive and is de-
veloped in a principled 1-step optimal Bayesian frame-
work. ’

e The computational complexity is partially decoupled
from the lag D and linked to the chip size. This gives
an ability to maintain sufficient lag while controlling
complexity. The chip size can be chosen by the user
allowing a performance-complexity tradeoff.

¢ Boundary conditions can be addressed completely
within the framework of the algorithm. No assump-
tions need be made about pixels that do not lie in the
image frame.

o Transition probabilities can be estimated recursively
and incorporated in the BCDF algorithm to allow an
“adaptive” version. We have observed that the algo-

rithm is reasonably robust to variations in the assumed

2545

transition probabilities at medium SNR’s. Hence a sim-
ple relative frequency approach is sufficient for estimat-
ing the transition probabilities. However, sophisticated
estimators can be used (at lower SNR’s) at the expense
of increased computation.

e A limitation of the algorithm is that the complexity
increases rapidly for multilevel images. This motivates
the investigation of a “reduced-state” approach.

V. CONCLUSIONS

In this paper, we investigated reduced complexity
fixed-lag smoothing for the segmentation of binary im-
ages, in a effort to render real-time processing viable.
Beginning with the optimal fixed-lag MAP pixel-by-
pixel estimator for an MMRF model, we applied hard
decision feedback to fix the size of the statistic and
soft (conditional) decision feedback to further reduce
complexity without reducing lag. This results in the
Bayesian Conditional Decision Feedback (BCDF) algo-
rithm where the exponential component of the com-
plexity is partially decoupled from the lag and linked
to a user-chosen parameter called the “chip size”. The
chip size can be chosen to yield the desired performance-
complexity tradeoff. Simulations demonstrate the per-
formance and viability of the algorithm.
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Figure 2: Segmentation of ellipse and checkerboard : transition Figure 3: Segmentation of a Jet: transition probabilities known,
probabilities known, D = 3, (J ,J) = (1,2), SNR=1.5, Gaussian D=3, (J,J) =(1,2), SNR=1.5, Gaussian noise.
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