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ABSTRACT

In the framework of model based image processing, we
propose a new parametric approach for classifying
textured images. The image, considered as a two-
dimensional stochastic process, is characterized by a set of
reflection coefficients computed using a two-dimensional
adaptive lattice filter based on RLS criterion. The
corresponding algorithm is named Two-Dimensional Fast
Lattice Recursive Least Squares.

In order to evaluate this method, classification rates are
calculated on a set of 8 different textures from the Brodatz
album. We carry out performance comparisons with
methods of characterization based on two-dimensional AR
coefficients computed with two-dimensional transversal
filters or based on statistical features calculated from co-
-occurrence matrices and neighbouring matrices.

1.INTRODUCTION

Many applications in image processing such as medical
imaging, teledetection or TV images compression may
lead to a problem of characterization of textured images.
One can distinguish two groups of textures: deterministic
and stochastic textures. Deterministic textures are
described by a set of primitives and a set of placement
rules. Characterization of stochastic textures is still an
open field and many attemps have been achieved using
different approaches such as linear prediction theory [6]
{7], or co-occurrence matrices [8].

A two-dimensional adaptive lattice filter with RLS
criterion has been developed by Liu & al [1]. Some
significant results have been obtained in noisy images
restoration using an adaptive noise canceler {2].
Considering the well known results obtained for
characterization of vocal signals by mono-dimensional
reflection coefficients, we propose the set of two-
dimensional reflection coefficients as a new parametric
approach for characterizing textures.

Our approach is compared with parametric approaches
(i.e., transversal filters such as Two-Dimensional Fast
Recursive Least Squares filter [3] and Two-Dimensional
Normalized Least Mean Squares filter [S]) and with non-
parametric approaches (co-occurrence matrices [8] and
neighbouring matrices [9]).

In section 2, the two-dimensional linear prediction theory
is briefly recalled. In section 3, we present some details
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upon the extraction methods of the different parameters
for each representation. Finaly in Section 4, a discussion
upon the classification rates obtained with additive noise
is provided.

2. LINEAR FILTERING

If we consider an image as a realization of some
bidimensional random field process, it would be possible
to represent it by a parametric model. The corresponding
bidimensional AR model is defined by extending the one-
dimensional model so as to express the dynamic
characteristic of discrete data on a two-dimensional plane.
The prediction filter and the prediction error are given by
the relations:
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where D is the prediction support and, at coordinates (i,j),
x(i,j) is the pixel value, e(i,j) is the prediction error,
{a(m,n,i,j)} is the set of transversal AR coefficients.
The definition of the past and the future for a pixel leads
to different kinds of support D. The use of a Quarter-Plane
(QP) support leads to a causal model where the order is a
couple (M,N). The prediction support DQp is defined as
follows:

Dqp = {(m,n)/ 0sm<M, 0<n<N, (m,n)=(0,0)} (Fig.1)
so that all x(i-n,j-m) are contained in the past of x(i,j).
A QP support will be implemented for all different filters
presented in this paper.
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Fig. 1. QP AR Model Support Region.

We assume a cylindric connexity to solve boundary
problems and particularly to initialize the filter parameters
at the begining of each line:
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In a stationary case, the set {a(m,n,i,j)} of AR coefficients
do not depend on the position of the pixel (i,j). This
hypothesis enables us to derive the bidimensional adaptive
algorithms and {a(m,n,i,j)} is simply denoted {a(m,n)}.
As a stochastic texture is supposed to be a homogeneous
bidimensional field, filtering it by a bidimensional
adaptive filter will provides a specific set of parameters
which may be used for characterization.

3. PARAMETERS EXTRACTION

3.1. Two-Dimensional Fast Lattice Recursive Least
Squares Algorithm (TDFLRLS)

The prediction filter (1) is represented using the
bidimensional reflection coefficients obtained with the
TDFLRLS lattice filter [1][2]. Lattice filters present nice
properties, e.g. modularity, convergence, stability and
robustness [1].

In a general way, the optimal least squares filter
minimizes the accumulated squared error:
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The TDFLRLS algorithm which provides an exact
growing-order least squares solution to the deterministic
normal equations is derived from the multichannel and
geometrical approaches of the bidimensional linear
prediction [1] [4]. Due to limited space, we can't detail the
algorithm in this paper.
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Fig.2. Internal structure of the 2D RLS lattice cell.

For a DQp support, N+1 lattice cells (Fig. 2) are necessary
to implement a (M,N) order TDFLRLS filter. The forward
and backward lattice coefficients K are matrices with
dimension M(M+1) at the first stage and (M+1)(M+1) at
other stages. The image is filtered using order (2,3)
support providing 66 reflection coefficients.

3.2. Transversal filters

3.2.1. Two-Dimensional Fast Recursive Least Squares
Algorithm (TDFRLS)

The textured image will be characterized by the AR
coefficients estimated with TDFRLS [3]. This algorithm
uses the same multichannel and geometrical approach as
the TDFLRLS, involving the concepts of linear vector

spaces, orthogonality, projection operators and relation to
linear least squares prediction [3] [4].

3.2.2. Two-Dimensional Normalized Least Mean Squares
Algorithm (TDNLMS)

The AR coefficients are estimated by a transversal 2D-
Normalized LMS filter [S]. The NLMS is derived with the
prediction error equation (2) and the following equation
(see (1) for a(m,n) and x(i,))):
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Where e(j j) is the prediction error (2), { &j,j(m,n)} the set
of AR coefficients estimated by the filter at pixel of
coordinates (i,j) and p the step chosen to optimise the
convergence of the AR coefficients. The step used in the
experiments is a compromise between convergence speed
and stability of AR coefficients.
The number of AR coefficients is (M+1)(N+1)-1 for Dqp
support with (M,N) order. In this paper, we have used
order (3,3) support providing 15 coefficients for
transversal filter.

ﬁi+1,j (m,n) = ﬁi.j(m,n) +
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3.3 Co-occurrence matrices & neighbouring matrices

A well known non-parametric approach for texture
classification uses statistical information derived from the
enumeration of grey-levels in an image: the co-occurrence
matrices [8] and neighbouring grey-level dependance
matrices [9].

A texture descriptor composed of nine parameters is
computed from these statistical data:

- from the co-occurrence matrices: second angular
moment, contrast, correlation, difference inverse moment
and entropy.

- from the neighbouring grey-level dependance
matrices: little number of neighbours accentuation, great
number of neighbours accentuation, non-uniformity of the
grey levels, second moment,

4. CLASSIFICATION RESULTS
4.1. Classification procedure

Eight images (256x256) taken from the Brodatz Album
[10] have been used in these experiments: wood, bubbles,
canvas, water, grass, wool, ivy, and sand (See Fig. 3. left
to right, top to bottom). The simulation have been
performed within the framework of the SIMPA Library
[11].

Each image is divided into 5 overlapping subimages
(128x128), 25 overlapping subimages (64x64) and 25 non-
overlapping subimages (32x32) in order to test the
sensitivity to the size of images.

Using the set of vectors extracted from the 40 (128x128)
images (called Learning set), a Fisher-Snedecor test is
performed on each parameter in order to keep only the

2540



features which bring information and we eliminate
correlated variables so as to avoid information redundancy
(those operations were efficient especially for the
reflection coefficients. We have kept only a set of 14
parameters belonging to an order (2,2) DQP support).

The scattering matrix W'I(W+B) is computed from the
"within class" scatter matrix W and the "between class”
scatter matrix B. Applying a Karhunen-Loeve transform, a
reduced subspace is derived according to the main
eigenvalues of KL matrix (Discriminant Factorial
Analysis).

A Mahalanobis distance to the centroid of each class is
used to classify all the unknown vectors extracted from the
sets of (64x64) and (32x32) subimages. Results are shown
in Tab. 1 and 2 and in Fig. 4 t0 9.

Fig. 3. Textures from the Brodatz Album.
4.2. Comments
4.2.1. Convergence considerations

The convergence to a unique set of asymptotic values of
the TDFLRLS reflection coefficients on one hand and the
TDFRLS AR coefficients on the other hand occurs for
(32x32), (64x64) and (128x128) images. Some parameters
of the TDNLMS filter need more than 4000 iterations to
reach the final value. This explains its poor classification
rates result (Tab. 1). For TDFRLS algorithm, the use of
higher initialization value for autocorrelation matrix in
order to have fast convergence has caused the divergence
of AR coefficients.

4.2.2. Size considerations

Results were improved using (64x64) test images
comparatively with (32x32) test images, especially for
statistical features extracted with co-occurrence and
neighbouring matrices (Tab. 1 and 2). For the filtering
methods, convergence of parameters can be just obtained
with a good stability of the coefficients especially for
parameters calculated on the boundaries of the support.
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4.2.3. Noise considerations

All the images of the test sets are corrupted with an
additive zero-mean white gaussian noise with different
SNR (Tab. 1 and 2). In this case, all the coefficients are
biased. Tab. 1 and 2 shows the mean classification and
Fig. 4 to 9 the classification results for each texture.

The noise robustness for filtering methods is efficient up
to a SNR of 15dB. A too weak SNR causes an important
bias on the measure for the three methods.

5. CONCLUSION

This paper presents preliminary results. Nevertheless, we
can conclude that the new approach proposed for textured
image characterization reveals fast convergence and good
noise robustness. High classification rates are obtained
with reflection coefficients up to a SNR of 15dB SNR. A
100% classification rate is obtained with noiseless (64x64)
test images.

SNR oo 30dB | 15dB | 10dB
TDNLMS 695% | 25% / /
€0-0cC. 89.5% | 88% 77% | 55.5%
neighbour.

TDFRLS 96,5% | 96,5% | 95% | 70,5%
TDFLRLS 100% | 98% 96% 79%

Tab. 1. Classification rates, 64x64.
Learning set: 5 (128x128) images per texture (40 images).
Test set: 25 (64x64) images per texture (200 images).

SNR oo 30dB | 15dB | 10dB
C0-0C. 38% | 40,5% | 39,5% | 31,5%
neighbour.

TDFRLS 83% | 845% | 82% 68%

875% | 4%

TDFLRLS 875% | 87%

Tab. 2. Classification rates, 32x32.
Learning set: 5 (128x128) images per texture (40 images).
Test set: 25 (64x64) images per texture (200 images).
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Fig. 4. Learning set: 5 (128x128) images per texture,
test set: 25 (64x64) images per texture - 30dB
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Fig. 6. Learning set: 5 (128x128) images per texture,
test set: 25 (64x64) images per texture - 15dB
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Fig. 8. Learning set: 5 (128x128) images per texture,
test set: 25 (64x64) images per texture - 10dB
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Fig. 5. Learning set: 5 (128x128) images per texture,
test: 25 (32x32) images per texture - 30dB
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Fig. 7. Learning set: 5 (128x128) images per texture,
test set: 25 (32x32) images per texture - 15dB
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Fig. 9. Learning set: 5 (128x128) images per texture,
test: 25 (32x32) images per texture - 10dB



