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ABSTRACT

In this paper we propose and illusirate the application
of Wavelet descriptors for the quantitative description
of shapes. Fourier descriptors are known to be useful
for describing shapes based on their boundaries. As
these basically operate at one given scale or resolution,
their application leads to loss of information of salient
features of a shape contained at other scales.

Due to their inherent multiscale properties Wavelet
descriptors are potentially suitable for shape discrimi-
nation in such situations. The paper gives the basic
techniques of applying Wavelet descriptors in practical
applications.

1. INTRODUCTION

Describing planar shapes by using a set of parameters
is one of the most fundamental problems in pattern re-
cognition. Several techniques have been suggested. We
concentrate on the descrimination of shapes by using
the boundary function +.
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Figure 1: Parametric representation of a plane curve

2531

The curvature function ® is defined by
o(A) =06()) - 6(0), (1)

where A is the arc length measured from the selected
starting point (s. Fig 1).

One wants to obtain measures for characterizing
shapes, i.e. measures which yield parameters close to
one another in parameter space for similar shapes. Lo-
cal features can be matched by using the Houghtrans-
form [3]. This technique uses a-priori information as
templates must be known. Fourier descriptors (FD’s)
as discussed in section 2 for this application have many
desirable properties including invariance under trans-
lations, rotations and change in scale [2] [4]. But often
one wants to discriminate shapes, that are very simi-
lar but differ in some detail. FD’s fail for two rea-
sons. First details contribute only to high frequencies
which are very unspecific. Second FD’s are global fea-
tures whereas details are local properties of a shape.
To overcome these disadvantages, we propose Wavelet
descriptors.

shape 1

shape 2

Figure 2: Two similar shapes to be distinguished

2. FOURIER DESCRIPTORS

We follow the definition of Zahn and Roskies in [4].
Given the function ¢ according to (1) we define

Q*(A):@(%) P @)

where L is the length of the boundary curve.
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Expanding the periodic function ®* as a Fourier

series -
®*(A) = kz::lAk cos (% - ak) ) 3)

we obtain the FD’s { Ak, a;} for the curve 4. As shown
in [4] Fourier descriptors posses a number of proper-
ties which correspond to the geometry of the shape,
e.g. symmetric shapes have vanishing FD’s at certain
frequencies. As mentioned earlier, FD’s fail in discri-
minating similar shapes as in Fig. 2.

3. WAVELET DESCRIPTORS

In this section we give the definition and an algorithm
to compute Wavelet descriptors. Some properties of
Wavelet descriptors are mentioned.

3.1. DEFINITION

The Wavelet descriptors Wf » of a given boundary func-
tion v are defined as follows

ARCIE 7 " (\)ha,s(Y) dA (4)
with °°
vos() = 2w (22 5)
*()) = @(%)H«-j\v (6)
N > L. (7)

This means that the energy of ¢ is constant for all
scales and the length of v is normalized to N. As &*
is periodic with N the Wavelet descriptors are periodic
with respect to the shift . Therefore we only consider
the Wavelet descriptors with

0<b< N . (8)
3.2. CALCULATING WAVELET
DESCRIPTORS

Considering that Wavelets are assumed to have com-
pact support, there exists a s such that

/ (@) dz — 0 )
lz|>s

nolds, i.e. s is the spatial width of 4. Consequently we
need considering only values of a with

0<a-s<N . (10)

The limits of the integral in (4) can be changed to

kN

W, = /wa,b(,\)-cp*(A) dx (11)
—kN

with k being an interger value
k>s+1. (12)

Following eqn. (11) we calculate the Wavelet des-
criptors by partial integration. We obtain

Whiv} = [Wa(d)- (W)
kN
- / Tos(N)-#7(N) dA (13)
—kN
A
¥()) = /¢(r) do (14)
5
\I’a,b(/\) = /wayb(r) dz
= \/E-\Il<’\;b> (15)
®*(n-N) = 0 (16)
@) = 1@ ()‘TVL-)JF%" (17)
For the case that v is a polygon
K
() =Y Apy -6z~ z) (18)

p=1

holds (with z, being the edges of one period of the
polygon v and Ay, the angle at z,) and we obtain the
following formula for the Wavelet descriptors of

. F K
Wi = = D0 D A Yap(d —mN)
m=—kp=1
-2 S(a) (19)
where
oQ
S(a) = / U, 5(z) de (20)
is a constant for each scale and
N
Ap =xp - T (21)
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3.3. HAAR WAVELET DESCRIPTORS

As an illustration we show the calculation of Wavelet

descriptors based on the Haar Wavelet. We set the
Haar Wavelet as
1 for % <z<L0
P(z) =h(z)=< ~1 for 0<z< 3
0 otherwise
(22)
Thus
1/2+z for -£<z<0
H(z) = 1/2—2 for 0<z< 3 (23)
0 otherwise
S@a) = = 4‘/‘7 . (24)
We obtain
mN —b
Wh = Va3 Y ag,n (miot)
m'——2p—

4. SOME PROPERTIES OF WAVELET
DESCRIPTORS

Wavelet descriptors yield some properties reflecting the
shape’s geometric features.

Symmetric shapes

If the shape is symmetric with respect to a point ¢

B (t—X)+ B (t+A) =S () + B (t7)  (26)

and the Wavelet function is symmetric

¥(z) = ¥(-=) (27)
then
Va: Wl {v}=0. (28)
If the shape is symmetric under rotation
O*'(A)=9*(A—-1) (29)
and the wavelet yields
P(z) = 0 for || >¢ (30)

¥(z)

(e.g. the Haar Wavelet holds these conditions) then

—y(z —c) for z€[0;c]  (31)

4
W::b=0 fora:;. (32)

Integration in one scale
The integral over one period N at one scale with respect
to the shift b is zero, i.e.

N
/ W s(z)db=0 . (33)
Q

This means that the function

_ Wf:,, for
Pa(z) = 0 otherwise

is a wavelet. This wavelet contains information about
the shape 4 and can therefore be used for matching
other shapes.

€ [0; V] (34)

5. DYADIC WAVELET DESCRIPTORS

The continous Wavelet transform as used above is not
suitable as the coefficients contain redundant informa-
tion. Therefore we use dyadic Wavelets for the calcu-
lation of dyadic Wavelet desriptors.

The dyadic Wavelet descriptors of a shape are defi-

ned by
7 A—-n
W,'fl,ﬂ = /Q*(A)-d)( o > dx  (35)
m € N, (36)
n = 0-27,1.2™m 2.2™ ... (37)

The length N of ®* has therefore to be normalized
to a power of 2.

6. USING WAVELET DESCRIPTORS FOR
SHAPE DESCRIMINATION

We calculate the Fourier descriptors and the dyadic
Wavelet descriptors of the two shapes in Fig (2). Length
of both shapes was normalized to N = 128. The Fou-
rier descriptors are shown in Table (1) and the Wavelet
descriptors in Table (2).

The Fourier descriptors shown differences in all fre-
quencies. There are some (n = 4, 8, 12) that have simi-
lar values which corresponds to the square-like shapes.
But the differences cannot be localized.

The Haar Wavelet descriptors show that the shapes
are both symmetric at large scales (i.e. the ’'notch’ in
shape 1 is not regarded). But differences appear in
other scales. The Wavelet descriptors can be analysed
in a better way, if their values are normalized in every
scale.
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shape 1 shape 2 a | b || Wya(shapel) || W, (shape?)
n [4n] ©On [An] Pn 64| 0 0.1077 1.470
1 {[0.0213 | -1.8266 || 0.0167 | -0.7165 64 -0.1077 -1.470
2 1/0.0739 | -0.1615 || 0.0004 | 1.8116 32 0 0.4009 0.1039
3 1| 0.0141 | 1.1490 || 0.0239 | 0.4065 32 -0.4388 0.0148
Z || 0.4766 | -1.9416 || 0.4887 | -1.9469 64 0.2486 -0.1039
5 [10.0343 | 3.0740 || 0.0088 | -0.9259 96 -0.2107 -0.0148
6 || 0.0860 | -0.8429 || 0.0016 | 1.9725 6] 0 1.8662 1.7739
7 |[0.0478 | 0.4333 || 0.0300 | 0.0680 16 -1.2992 -1.6269
8 [ 0.2216 | -2.4747 || 0.2279 | -2.3250 32 1.2992 1.6269
9 ][ 0.0408 | -2.6636 || 0.0027 | -0.0377 48 -1.9198 -1.6059
10 |[ 0.0902 | -0.6942 || 0.0039 | 1.8475 64 1.9198 1.6059
11 || 0.0328 | 1.3796 || 0.0347 | -0.2840 80 -1.5682 -1.7529
12 [ 0.1602 | -2.6103 || 0.1350 | -2.7074 96 1.5682 1.7529
13 [[ 0.0303 | 0.7655 || 0.0085 | 0.8755 112 -1.8662 -1.7739
ig gg;gg jggg? ggggg —1)21135% Table 2: Wavelet descriptors of the shapes in Fig (2)

Table 1: Fourier descriptors of the shapes in Fig (2)

7. CONCLUSION

Wavelet descriptors have been introduced based on the
Haar Wavelet. Future research will concentrate on
using various mother wavelets with an increased num-
ber of vanishing moments as then their coefficients con-
tain more information [1].

Another approach that leads to parametrisation of
the boundary function v is using R-tables. This works
especially good for convex hulls. By taking the Wave-
let transform of this function () Wavelet descriptors
are obtained that have a more specific meaning in the
spacial domain.

The main advantage in comparison with Fourier de-
scriptors is the constant bandwidth at each resolution.
Fourier descriptors will perform better for regular sha-
pes when details can be neglegted. Wavelet descriptors
allow a zoom-in at details using the same technique as
for describing global features.

A better understanding of what ’bandwidth’or ’fre-
gquency’ means in terms of shapes will be necessary to
interpretate the coefficients of both Fourier and Wave-
let deseriptors.
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