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Abstract

Texwre is a phenomenon in image data that continues
to receive attention due to its wide-spread applications,
ranging from remotely sensed data, to medical imaging, to
military applications. In this paper we use a new class of
spatial stochastic models called parrially ordered Markov
models (POMMs) for texture analysis and model selection.
POMMs are a generalization of Markov mesh models
that have the property that their joint probability density
function is an exact, closed form expression in terms of
conditional probabilities. Markov random fields (MRFs)
do not, in general, have this property. This property of the
POMMs has lead to exact and fast computations involving
the joint probabilities. We show how these fast algorithms
allow POMMs to be used for fitting models to textures,
and for supervised texture segmentation. Applications to
real data show that the model selection technique gives
very good results. POMMs are a broad and general class
of models, and have the potential to be applied to diverse
areas beyond imaging, such as probabilistic expert systems
and artificial intelligence.

1. Markov Random Fields and POMMs

Markov random fields are a versatile tool that have
many uses in image processing [1]. A spatial stochastic
model, it is well-known that a MRF can be expressed as
a Gibbs distribution [1]. However, in computer imple-
mentations of algorithms which require calculations of the
joint probability density function (pdf), such as the maxi-
mum likelihood estimator (MLE) or maximum a posteriori
(MAP) estimator, only approximations of the Gibbs nor-
malizing constant are typically available [1]. Thus, the
efficacy of the MRF model can be severely limited in
practical applications.

Partially ordered Markov models (POMM:s) are a
new class of models recently introduced [2] that generalize
Markov mesh models (MMMs) [3]. It has been shown [4]
that the particular relationship between random variables
(r.v.s) in a POMM is a partial ordering of the set of pixel
sites. As classes of models, we have MMMs C POMMs
C MRFs. POMMs have the attractive property of closed
joint pdf.

Let A = {a;;} represent the set of r.v.sinan M x N
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array = 2. Assume that the M x N array of r.v.s has
an acyclic digraph imposed upon it. For this acyclic
digraph denote the associated partial order by <. Define
the set adja;; to be those r.v.s which are “less than™ and
adjacent to a;; under the digraph relation. Let LY be the
minimal elements of the partially ordered set A. These are
elements which have no other elements “less than” them.
Then we have the following result:

P(A)=P(L% - J] P(bladich). )

{b:b€ A\L"}

That is, the joint pdf can be expressed as a product of
conditional probabilities (modulo the “boundary” effects
L%). More results extending MMM properties to POMMs
can be found in [4].

Note that because the joint pdf in Eq. (1) is exact, no
approximations of the normalizing constant are necessary.
Also, the specification of parameters for the POMMs is
straightforward, through the use of Eq. (1) and the spe-
cific form of conditional pdf used. For all models here,
a conditional binomial distribution was used. Any condi-
tional pdf that satisfies all conditions for a valid probability
distribution can be used to model the conditional proba-
bilities of the POMM. In the next section, we introduce
the models we developed for texture analysis.

2. POMMs for Model Selection
and Texture Segmentation

While stochastic texture models have been used in
many areas of image processing, not much emphasis has
been given to the problem of model selection. In most lit-
erature on texture segmentation using MRFs, a fixed order
MREF is assumed for all textures in the image. However,
one simple mode! is usually not sufficient to model all
texture classes. We believe that the choice of a model that
"best” fits a class of textures is data dependent. Model
selection is an important criterion that needs to be consid-
ered in texture segmentation, especially when the image
is composed of a wide range of micro and macro textures.

In this research effort, we used POMMs in a model
selection criterion for textures, and also for supervised
segmentation of textured data. We incorporated the model
selection criterion in a supervised texture segmentation al-
gorithm using a MAP criterion and iterated conditional
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modes (ICM). Due to the exact closed form of the joint
pdf, POMMs have a closed form expression for the likeli-
hood function, and thus allow an exact calculation of the
MLE, and a swift computation of the MAP using ICM.
The ICM algorithm is computationally efficient and tends
to avoid phase-transitions that are inherent in MRFs.
Model Selection. We employed a Bayesian approach for
model selection. This has proved to be successful in
other approaches [5], [6]. The Bayesian decision rule is
consistent, that is, the probability of choosing the cor-
rect model approaches one as the number of observa-
tions goes to infinity. The algorithm assumes knowledge
of the maximum likelihood estimator, which is available
for the POMM. In the Bayesian approach to model se-
lection, prior probability distributions for several possi-
ble models are assumed, and the model that maximizes
the posterior probability conditioned on the data is cho-
sen. Given a collection of K models, C,,...,Ck, the
Bayesian approach chooses the model that maximizes the
posterior probability P(C; | A), where A is the sample im-
age of a texture. The posterior probability is written as
P(Ci | A) = [ P(A| 6;)P(6; | C;)P(C:)db;, where 6; is
the vector of parameters for model i. If we assume that
P(C;) is constant for all models, the decision function
used for model selection is given by

d = / P(A | 6;)P(8; | C:)db;. 22)

The asymptotic expansion of Eq. (22) as ob-
tained from the results in [6], is given by d; =
(2m)~F7*P(4| é,-)P(é,- | Ci)n=K12A7 12, where d; is
the maximum likelihood parameter estimate, K is the
number of parameters in model i, n is the number
of pixels in the array, and A; is the Hessian of the
likelihood at the maximum likelihood estimate. Since
In (21r)_K/ 2 does not vary much with models, and In A;
is small compared to the log likelihood In P(A | #6;),
the decision rule we used for model selection is d; =
InP(A] é.-)—K/? In (n), which is similar to Schwarz’s
criterion. Note that this model selection technique uses the
maximum likelihood estimate, which is not easily com-
putable for general MRFs.

Given a set of POMMs (), ..., Ck, we choose the
model j as the "best" fitting model if j = arg (mjax d,-).
In Fig. 1, we show four of the nine POMMs we u'sed for
testing the model selection method.

We applied the model selection technique to several
of the benchmark Brodatz textures. The images were
of size 128 x 128, and had 16 gray levels. We used
K=9 POMMEs as representative models against which we
matched. We found that all textures were modeled better
by high order POMMs than by low order ones. This may

be because the Brodatz textures are composed of macro-
textures, and high order POMMs incorporate dependencies
on pixel sites that are spatially distant. We display one of
the original Brodatz textures of tree bark in Fig. 2. The
selection process found that the 11-th order POMM gave
the best fit to the image data in Fig. 2; in Fig. 3, we
display the parameters found. In Fig. 4, we regenerated
the texture from the model in Fig. 3, using a new, fast
one-pass algorithm called the level set algorithm [4] that
synthesizes an image in one pass of the pixel sites. For
comparison in Fig. 5, we give the texture synthesized
from the maximum likelihood estimates using the fourth
order POMM shown in Fig. 1 (a). Obviously, the high
order POMM provides a more accurate fit to the data.

In order to represent the conditional probabilities of
the gray values at a pixel conditioned on its adjacent lower
neighbors, we used a conditional binomial model that was
introduced in [7].

. G-1\,. “1-m
P(aijzmlad]_<a,-j)=< m )0 (1—0)6 1-m

T
m=0,1,...,G—-1, where § = ¢ , and
1+eT
T=a+pfai_1;+78i-1j-1+6a; -1+ €ai41j-1.

2.3)

POMMs used for Textures and Region Distribu-
tion. Texture segmentation using a model based ap-
proach involves a method for estimating model param-
eters, and maximizing or minimizing a suitable cost func-
tion. A common measure used for texture segmentation
with MRFs is maximum a posteriori estimation of the
label image B, conditioned on the observation image A,
P(B | A) [7]. However, lack of a closed form expression
for the joint distribution of MRFs makes the simultaneous
job of parameter estimation and MAP segmentation math-
ematically intractable. We propose a segmentation tech-
nique using POMMs that simplifies parameter estimation
and MAP segmentation, and incorporates model selection
into the texture segmentation problem.

We used two different POMMs to model the two
processes of texture data and region labels in the image.
We assumed that for every observed pixel q;; in the data
image A, there exists a labeled pixel b;; in the segmented
image B that represents the texture class to which pixel
a;; belongs. We used a conditional binomial distribution
as given in Eq. 2.3 to model the texture data process.

In order to model the region distribution of the la-
beled image, we assumed that each region is reasonably
large and contains no small isolated regions within, and
that the texture boundaries are reasonably smooth. Based
on these assumptions, we developed a POMM that is sim-
ilar to the multi-level logistic model to model the region
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label process. The general equation for the conditional
distribution on any POMM is

P(a,'j I adj<a,-j) = H(a.-j, @mn - Gmn € adj< a,-j),

where H can be any arbitrary function that satisfies the
conditions for a valid probability density function. Since
our aim is to model a process that avoids small, isolated
regions, we assign larger "penalties” to isolated pixels or
small regions. The conditional probabilities are

exp (—Ub,.j)

P(b,‘j | adj<b,-j) -_——
€ —Ub.‘,'
g XP( )

, where

Us; = 2. Fpe(bpe)+ 2z
(p.0)€adjbi; (p.0).(r,8)€adi < by;
Here, the single pixel interactions obey Fy,,(b,4) = 0, and

—-g ifb,, =b
Fpg),(rs)(bpg: bra) = {/3 if b, # b >0
The larger the magnitude of 3, the greater the penalty for
small regions.
Supervised Texture Segmentation. MAP segmenta-
tion involves computing a segmented image B* such that

B* = arg (mgxP(B | 4)) = arg (mBa.x P(A | B)P(B)).

24)
The calculation of the conditional probabilities P(A | B)
and P(B) is trivial for a given B, but the evaluation of
Eq. 2.4 is difficult. Hence, we used the ICM algorithm to
compute Eq. 2.4, but instead used the quantity

bij = arg (ﬂ,}?x P(bi; | A, B\{bu'})), (2.5)

for all (i,j). The quantity in Eq. 2.5 is easier to compute
than Eq. 2.4, but at the cost of accuracy in labeling. The
reason we chose ICM to compute the MAP, as compared
to using a global optimization technique, is that the MAP
is faster to compute.

We performed supervised texture segmentation with
model selection in the following manner. First, given
instances of all representative textures that may be present
in an image, we use the model selection rule to compute
the “best” model for each texture. If there are K possible
classes in A, we determine the set of optimum models
for the classes, say, M* = {M;,M,,...,Mg}. We
compute the joint pseudo-local likelihood at each pixel
for all possible textures in A,

Jmn (i) = P(Amn | M;, (m,n) € Q)

= I P(amn|adicamn, Mi),i=1,... K.
(m,n)eqn

FP'I” (bPQ’ b"-’)'

The pixel is assigned the texture class number that has the
maximum joint pseudo-local likelihood among K classes,
i., by, = argmaxJy,,(i). The ICM algorithm is then
used iteratively tc; compute a B* until none of the pixel
labels in B* change.

We show the supervised segmentation algorithm ap-
plied to two images in Fig. 6 and Fig. 8, each a combined
Brodatz texture pair. The resulting segmented images are
shown in Fig. 7 and Fig. 9, respectively. We chose a ran-
domly placed border between the textures to simulate real
world images. The algorithm performed an accurate clas-
sification of the textures, even at the texture borders. The
results show that even choosing a local optimization tech-
nique such as ICM results in good segmentation results,
when the models chosen for the textures are “close.” This
stresses the importance of using a model selection rule to
choose the best model, instead of simply choosing one
model.

3. Conclusions

We have presented the use of a new stochastic spatial
model called partially ordered Markov models for texture
segmentation and model selection. Due to the property of
a closed joint pdf, POMMs allow exact computation of
many useful statistical algorithms that use the joint pdf,
such as maximum likelihood estimation and maximum a
posteriori estimation. We have presented a model selec-
tion rule that is especially suited to POMMSs. The model
selection technique is incorporated into texture segmenta-
tion using POMMSs, which allow very fast computation.
This technique can be extended to unsupervised texture
segmentation using global optimization techniques, such
as simulated annealing, to obtain better MAP estimation.
An altemnative criterion to MAP, such as minimum mean
square estimation, may also be used for segmentation.
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Fig. 1. POMMs used for model selection. The symbol “X” marks the location (i,j). (a)
Fourth order model. (b) 11-th order model. (c) 12-th order model. (d) 22-nd order model.
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Fig. 2. Original texture Fig. 3. Model and Fig. 4. Texture synthesized Fig. 5. Texture synthesized
used for model fitting. parameters giving best fit to  using best model as given  using fourth-order (lower
image in Fig. 1. in Fig. 3. order) POMM.

Fig. 6. Original image Fig.7. Supervised Fig. 8. Original image Fig. 9. Supervised

consisting of grain and segmentation of image in  consisting of cork and tree, segmetation of image in
water. Fig. 6. Fig. 8.
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