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ABSTRACT

The aim of this work is to propose a method for
optimizing the decomposition law of a tree-structured
wavelet transform in order to maximize the capability of
discriminating different textures. The optimization
criterion is the maximization of the Fisher's distance. The
analysis is carried out theoretically and by simulation on
gaussian Markov random fields and is then applied to the
classification of real Synthetic Aperture Radar images.

1. INTRODUCTION

Multiresolution processing of images by Wavelet
Transform (WT) has already been proposed for texture
analysis and classification. The WT is generally computed
by a bank of mirror filters, whose output is undersampled
in order to keep the overall number of samples constant.
The WT of an image generates four images: a lowpass
sub-image and three detail sub-images corresponding to
the discontinuities along the horizontal, vertical and
diagonal directions. The WT can then be applied
recursively on the sub-images to extract informations at
different scales. Conventional pyramid-type wavelet
transform recursively decomposes the low-frequency
channel. However, in many practical cases, most of the
information useful for discriminating different classes of
texture is contained in the middle frequency channels.
Moreover, dealing with 2-Dimensional (2D) sequences,
the spatial orientation of the discontinuities is relevant for
the ensuing classification. Therefore it is useful to
decompose the image in an adaptive way in order to
enhance the discrimination capabilities of the classifier
using the wavelet representation as a tool for the feature
extraction. In [1] has been proposed an adaptive tree-
structured wavelet decomposition that assumes as a
criterion for the choice of the channel to be further
decomposed the energy: at each iteration the WT is applied
to the channel with the highest energy. In this work we
propose a recursive decomposition method based on the
maximization of the discrimination capabilities among
different classes. The discrimination capability is assessed
by the Fisher's distance. The classification is performed by
evaluating a set of discriminant functions and comparing
them with a set of thresholds. The discriminants are
functions of the wavelet coefficients representing the
image to be classified. It will be shown that the
discriminants have to be nonlinear functions of the
wavelet coefficients. The proposed approach is analyzed
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theoretically and by simulation on a gaussian Markov
random field, and on a real Synthetic Aperture Radar
(SAR) image.

2. CLASSIFICATION IN THE WAVELET
DOMAIN

An image classification system is tipically based on
two fundamental steps: feature extraction and
classification. In the approach we are proposing the feature
extraction is performed by computing the wavelet
transform of the image and the classification is obtained
by computing a set of discriminants, which are functions
of the wavelet coefficients, and comparing them with a set
of thresholds.

2.1 Why using wavelets ?

The image is classified according to the texture properties.
The reason for using the wavelet transform lies in the fact
that the texture is related to the local correlation (or
spectrum) properties. The wavelet transform is a method
for representing an image at different scales. In particular,
it provides information on the energy content of the image
over different spatial frequency bands and orientations.
This information can then be exploited for discriminating
regions with different texture. Moreover, by using an
orthogonal WT, we have an efficient and nonredundant
tool for extracting the information useful for the
discrimination. The method is nonredundant because the
number of samples in the representation in this case is
exactly equal to the number of pixel of the original image.
The method is also efficient in the sense that the two-
dimensional WT can be efficiently computed by the
cascade of quadrature mirror filterbanks, whose outputs are
all decimated by a factor two, as shown inFig.1 [2].

By means of the wavelet decomposition, we have a
tool for associating to each pixel a feature vector, instead
of just one value given by the pixel intensity. For
example, with reference to Fig.1, representing one stage
of the wavelet transform, we can associate to each
position (n, m) in the image a four-dimensional vector
y(n, m) whose elements are the values of the four output
sub-images, corresponding to the same position:

y'(n, m) = (y1 (n, m), y2(n, m), y3(n, m), ys (n, m))

1
If we further decompose each sub-image by the wavelet
transform, we can associate to each pixel a sixteen-
elements vector and so on. It is this increase in
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dimensionality that provides a better capability of
discriminating different texture areas.
2.2 How computing the discriminants ?

The wavelet coefficients are combined to evaluate a
set of discriminant functions which are then compared
with a set of suitable thresholds for the classification.
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Fig.1 - One iteration of wavelet decomposition

The number of discriminant functions has to be at least
equal to the number of classes minus one. Dealing with
real images, it is often necessary to compute the
discriminants as nonlinear functions of the wavelet
coefficients. The reason for using nonlinear functions is
the following. Let us consider one step of the WT, as
shown in Fig.1. The lowpass (LP) channel (along both
rows and columns) often contains most of the energy
necessary for the image representation. However, since the
discrimination problem is of course different from the
representation problem, often the LP sub-image is not
essential for the discrimination. Conversely, the highpass
(HP) sub-images, even if characterized by a lower energy
content, they do carry informations about the image
discontinuities (their frequency and their orientation),
which are often fundamental for the discrimination
between different textures. Let us now consider the ideal
case of an image modelled as a gaussian random field. If
the samples associated to each class are characterized by
different covariance matrices and mean vectors, according
to the Bayes' decision rule, the optimal discriminant
function turns out to be a quadratic function. The quadratic
function reduces to a linear function only in the case in
which the covariance matrices relative to different classes
are the same, in which case the discrimination is only
based on the difference between the mean vectors. Since
the WT is a linear operator, the WT of a gaussian random
field provides four gaussian random fields. Three of these
fields (the three highpass sub-images) are zero mean
gaussian random fields, being the output of highpass
filters. This means that if we want to base our
classification method on the highpass wavelet coefficients,
we cannot exploit any difference in the mean value, but
we must exploit the only possible difference which is
impressed on the covariance matrices. The discriminant

functions are then quadratic functions. Dealing with real
images, the gaussian model may not be appropriate.
However, if adjacent image pixel are weakly correlated and
the filter impulse responses are long enough, the filter
output can still be modelled as a gaussian random field, by
virtue of the central limit theorem. This means that the
previous arguments, based on the ideal gaussian model,
can be often extended to the analysis of real images.

2.3 Classification criterion .

The aim of the ensuing analysis is to quantify the
improvement in discrimination capability of a
classification method based on the wavelet decomposition.
The performance of the classifier can be assessed by the
probability of erroneous classification. However, since
sometimes it may be difficult to find out a closed form
expression for the error probability, a good performance
parameter can be given by the Fisher's distance which, in
a two-class problem. is defined as [3]:
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where Nk and Of are the expected value and variance of
the discriminant function, conditioned to the fact that the
input sequence belongs to the class Qy, with k=1, 2. The
Fisher's distance will also be used to evaluate which is the
tree-decomposition that maximizes the discrimination
capabilities. We will examine the optimal approach based
on the computation of the discriminant as a nonlinear
function of the observed vector and some simpler sub-
optimal approaches where the nonlinearity is applied to
the output of the WT and the resulting values are then
combined linearly.
2.3.1 Optimal quadratic classifier

We will now examine in detail the two-classes case
where the input image is modelled as a zero mean,
stationary gaussian Markov random process. Let us denote
by x(n, m) the 2D input sequence. We suppose that the
input random process x(n, m) may belong to two classes
Q1 and Q7, in which cases, it is characterized by
covariance matrices Cxi or Cxo, respectively. We will
also assume that the correlation of the process is separable
and has an exponential law:

E{x(n, m) x(n+i, m+j)} = Rk(i, j) = Rkx(i) *Rky(Q) =
=Pgexp(-1il/lkx)exp(-1j1/1ky) (3)

where the subscript k refers to the class (k = 1 or 2) and
lkx and Iy are the correlation lengths, corresponding to
class k, along the rows and the columns, respectively.
Since the input sequence is a zero mean gaussian process,
the output sequences yi(n, m) are also zero mean gaussian
processes. The goal of the classifier is to associate to each
pixel x(n,m) its corresponding class. According to the
Bayes approach, given a zero mean gaussian vector y that
may belong to two classes 1 and Q7, the optimal
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classifier is based on the computation of the quadratic
discriminant function [3]:

z=yIQy @)

and on its comparison with a threshold. The matrix Q is
equal to [3]: 1
Q=Cy!- Cyi (5)

where Cy; and Cy, are the covariance matrices of y
conditioned to the belonging of the input sequence to class
Q, or Q,, respectively. The vector y is formed with the
outputs of the wavelet transform of the input sequence
x(n,m), as in (1). The covariance matrices Cy; and Cy,
can be expressed in terms of the input covariance matrices
and the filter impulse responses, by recalling that the
covariance function of the filter output is equal to the
convolution between the input covariance function and the
autocorrelation of the filter impulse response In the case
we are examining, the conditional expected values of the
discriminant function (4) are:

M =E{z/Q}=E(y"Qy/} = 1 (QCx) (6)
ok =E{(z-Mc)* /Q«} = 2r (QCxx Q Cxx) (7)

for k=1, 2 (tr(A) indicates the trace of the matrix A).
These values, once substituted in Eqn.(2), allow us to
evaluate the Fisher's distance. For example, with reference
to the correlation model of (3), let us assume that the two
input classes are characterized by the two sets of values:
(P1=1,11,=8,1jy=8) and (Pr= 1, I, = 16, I,y =4). In
such a case, there is no way to discriminate the two
classes by means of a pixel-by-pixel analysis since each
pixel is a gaussian random variable (rv) with the same
mean value and variance in both cases (the Fisher's
distance is zero in such a case); if we compute the first
order WT (we have used an 8-taps Daubechies filter) we
obtain a Fisher's distance equal to 0.213. If we proceed
further by decomposing each sub-image by a second WT,
thus obtaining 16 sub-images, we obtain a Fisher's
distance equal to 0.436. This parameter then quantifies the
increase of the discriminability between the two classes
gained by working with the wavelet representation.
2.3.2 Feature subset selection

As regards the representation problem, all the four
sub-images obtained by the WT have to be retained if we
want to invert the transform and recover the initial image.
However, for what concerns the classification problem,
the four sub-images carry different amount of information
and some of them can be discarded without any consistent
loss of discrimination capabilities. The Fisher's distance
can be used again as a measure of the separability between
classes. Its value can be used as a criterion for the
extraction of the subset of features that still provide a
good classification, within an acceptable loss, with a
lower computational cost. As an example, let us consider
again the classification of the 2D Markov field considered

before. Table I shows the Fisher's distance corresponding
to taking all the sub-images and any subset of them. The
left column reports the sub-images taken into account (the
numbers 1+4 refer to the output sequences, as indicated in
Fig.1); the center and right columns report the Fisher's
distance relative to two cases corresponding to two pairs
of correlation lenghts: (1;,= 8, 1;; = 8; I, = 16, I, = 4)
and (1;,= 8, 1}, = 8; I, = 1, Iy, = 1). From both cases we
can observe, for example, that the lowpass image can be
discarded without any appreciable loss and that the two
sub-images carrying more information are the sub-images
2 and 3.

subset 8x8/16x4 8x8/1x1
123 4 0.2126 0.6289
2 3 4 0.2124 0.6204

1 3 4 0.1101 0.5551
12 4 0.1027 0.5551
1 23 0.2121 0.6196
3 4 0.1099 0.5470

2 4 0.1025 0.5470
2 3 0.2119 0.6172
1 4 0.0001 0.4853
1 3 0.1098 0.3613
1 2 0.1025 0.3613
4 0.0016 0.0749

3 0.1027 0.3076

2 0.1104 0.3076
1 0.0090 0.4778

Table I - Fisher's distance

2.3.3 Suboptimum discriminants

The optimum discriminant is in general a nonlinear
function of the observed samples. In the gaussian case, it
is a quadratic function (see Eqn.(4)). In practical
applications, however, it may be quite cumbersome to
estimate the coefficients of the nonlinear classifier and is
then desirable to devise some simpler suboptimum
approach. At this purpose we propose the computation of
the discriminant as a linear combination of nonlinear
functions (tipically the square) of the wavelet coefficients.
The combination coefficients are chosen in order to
maximize the Fisher's distance. For example, with
reference to Fig.1, let us denote by z the vector whose
elements are nonlinear functions of the wavelet

coefficients: z'(n, m) = (g(y: (n, m)), ..., g(ym(n, m))),
where y; (n, m) is the generic i-th output sub-image, g(:)

is a nonlinear function and M indicates the number of sub-
images produced by the WT. The only important

characteristics of g(-) is that it cannot be an anti-
symmetric function, in order to give rise to new random
variables that have an expected value different from zero.
We define the new discriminants as a linear combination
of the elements of z:

kmax

dn,my= )

k=kmin

wk g(yx(n, m))

2525



The weighting coefficients w, can be chosen in order to
maximize the Fisher's distance. Indicating by mz, and
Cyy the expected values vector and the covariance matrix
of the random variables vector z, conditioned to the class
k, with k=1, 2, the optimal weighting vector is:

1 1 -
w= (—CZI +—sz) (mz2 - mz)
2 2

If the nonlinear function g(-) is simply the square value
of its argument, the expected value and the covariance
matrix of z can be explicitely expressed in terms of the
expected value and covariance matrix of the input image
(in the case of a gaussian random field) and of the filter
impulse responses. To improve the separability between
classes, we can also average the squares of the pixel values
within a moving window. The effect of this average is
that, as far as the region within the window is
homogeneous, the statistical parameters of z tend to be
more separated and this increases the discrimination
capabilities. However, this advantage is evidently paid in
tems of resolution. To quantify the performance of the
proposed approach, Table II shows the Fisher's distance F
together with the classification error probability Pe, as a
function of the window size and the sub-images used for
the classification. In particular, the first column (Lin(4))
refers to the case in which all the four output sub-images
of Fig.1 are considered, whereas the second column refers
to the case in which the lowpass sub-image is discarded.
As expected, the presence of the lowpass sub-image does
not bring any appreciable contribution to the
discrimination.

window Lin(4) Lin(3)

size F Pe (%) F P. (%)
1x1 0.198 39.15 0.197 39.15
5x5 1.604 16.52 1.603  16.53
9X9 4.032 543 4032 543
13X13  7.439 1.02 7.433 0.99

Table II - Performance of the wavelet-based classifier
3. CLASSIFICATION OF SAR IMAGES

As an example of application to real images, we
now examine the classification of Synthetic Aperture
Radar (SAR) images. In such a case there is a particular
need for an automatic classification method to handle the
huge amount of data transmitted from the satellite carrying
the radar onboard without the need for a human support.
At this regard, Fig.2 shows a SAR image obtained by the
German E-SAR flying over Oberpfaffenhofen. The image
shows an urban area in the upper left comer, some forests
in the lower left and upper right regions of the image,
some cultivated areas and an airport. The imaged area was
illuminated from the top, as evidenced by the shadows in
the image. The pixel intensity is not compensated to

correct the different attenuation due to the the different
distance from the closest points to the farthest ones (this
explains why the upper pixels are brighter than the lower
ones). By using a linear combination of the square values
of the wavelet coefficients corresponding only to the three
detail images (thus discarding the lowpass image), and
considering as classes of interest urban areas, forests and
cultivated fields, the result of the classification is reported
in Fig.3. It is worth noticing that, in spite of the
variation in the pixel intensity, the method works quite
well in discriminating the different areas.

e

Fig.3 - Classified image (white colour indicates urban
areas, gray indicates forests and black corresponds to
cultivated fields)
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