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ABSTRACT

A Hadamard-based framework for soft decoding in vector
quantization over a Rayleigh fading channel is presented. We also
provide an efficient algorithm for decoding calculations. The
system has relatively low complexity, and gives low transmission
rate since no redundant channel coding is used. Our image coding
simulations indicate that the soft decoder outperforms its hard
decoding counterpart. The relative gain is larger for bad channels.
Simulations also indicate that encoder training for hard decoding
suffices to get good results with the soft decoder.

1. INTRODUCTION
The demand for efficient wireless communication is continuously
increasing. Since a radio channel imposes bandwidth limitations,
we need powerful source coding algorithms to obtain a low
transmission rate. According to rate-distortion theory, the most
efficient way of compressing a source is to use Vector
Quantization (VQ) with as high dimension as possible [1].
Increasingly complex VQ-based speech and image coding
algorithms are permitted as computer technology advances, and a
vector quantizer is becoming a standard tool in many practical
systems. However, efficient data-compression gives sensitivity to
channel errors, since error protecting redundancy is removed from
the source signal. Furthermore, radio channels are poor, as they
suffer from both multipath fading and additive noise.
Consequently, some kind of error protection is necessary in
wireless communication. Traditionally an error protection code has
been used in tandem with a source code, and these codes have
been optimized separately. This scheme would be optimal if an
arbitrary large delay could be accepted. But this is of course not
the case in a practical situation. This has led to an increasing
interest in combined source-channel coding in recent research,
since the combined approach gives good performance at moderate
delay and complexity. In combined source-channel coding the VQ
is designed to minimize the total distortion from the quantization
and the channel errors, and no explicit channel code is used [2, 3).

Early work on VQ for combined source-channel coding
assumed simple channel models, such as the binary symmetric
channel (e.g. [2, 3]). Recent research in this area treats more
complex, and realistic, channel models (e.g. [4-6]). General work
on VQ for fading channels was presented in [4]. Examples of work
on scalar quantization of images and speech over a fading channel
can be found in {7] and [8].

In [6] we introduced a Hadamard transform approach to soft
decision decoding for vector quantization. The Soft Hadamard
Column Decoder (SHCD) of {6] is significantly easier to use than
the general formulation of the soft decision decoder utilized in e.g.
[5]. The SHCD was shown to be MSE-optimal in case of full
encoder entropy. The present paper is based on [6]. New results
introduced include the expression for the Hadamard transform

based MMSE decoder for a Rayleigh fading channel, and the
explicit modification of the SHCD to be optimal for all encoder
entropies. We will demonstrate that a significant improvement
over hard decisions can be obtained, without any notable increase
in complexity. Results for image coding over a Rayleigh fading
channel will be provided, but the method presented in this paper is
general in nature and many other applications are thinkable.

2. MODELS AND ASSUMPTIONS
Here we present the basic assumptions of this work. We introduce
our models and notation in general terms to illustrate the generality
of the proposed system. The communication system model under
consideration is depicted in figure 2.1, below.
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Figure 2.1 Communication system model.

2.1 The VQ Encoder and Decoder
The encoder is defined by means of the encoder regions {S;}; '
which partition R? in such a way that
XeS=I=i 2.

where I denotes the random index chosen by the encoder. The
integer i is transmitted to the decoder in binary form. Let
b,(i) €{-1,+1} denote the nth bit in the binary representation of i.
The number of bits is k=log, N. Also define the encoder
centroids as ¢, = E[XI =1i]. o

The decoder is defined by a function X = X(R) of the received
channel outputs. This function is chosen such that the distortion

D:dh-mRW 2.2)

is minimized. Note that this paper treats a soff decision decoder in
the sense that the decoder utilizes the unquantized channel outputs
r,. This approach was also taken in e.g. [6] and [S].

2.2 The Channel Model

We will restrict ourselves to a channel with binary moduiation
(e.g. BPSK, QPSK or BFSK), but our framework can be
generalized to larger signal sets. We make the common
assumptions that the additive noise {W,} is white, and the fading is
frequency nonselective and sufficiently slow to allow for coherent
detection. We also assume perfect interleaving in the transmission,
making the amplitude process {A,} white. The noise is Gaussian
with variance ¢ and the amplitude is Rayleigh distributed with
parameter o;. The received signal can be expressed as
R, =A,-b,+W, where R, denotes the output of the matched
filter at the receiver. Let R denote the vector of received channel
outputs corresponding to one source vector.
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3. DECODER AND ENCODER EXPRESSIONS

3.1 Optimal Decoder for a Fixed Encoder
The decoder function that minimizes the distortion D, for a fixed
encoder, can be written as

X(r)=E[XIR=r]= E[¢,R=r] 3.1
This expression can be rewritten using a Hadamard transform
approach. For this purpose we express the ith encoder centroid as
¢; =T-h,, where h, is the ith column of an N by N Hadamard
matrix H (c.f. {6]). The matrix T is fully specified by the encoder
centroids. Thus the MMSE decoder can be written

X(r)=T-h(r) (3.2
where ﬁ(r) = E[h,IR =r]. This Hadamard formulation is the key
to our implementation of the MMSE decoder. Using (3.2) it can be
shown that optimal soft decoding can be based on MMSE
estimates, b(r,)=E[b,(DIR, =r,,Pr(b, =+1)=1/2], of the
individual index bits b,(I). These estimates will be real numbers
in the interval (-1,+1) instead of the "hard" values +1 and -1.
More precisely, for the Rayleigh channel we have

}-l

bry=r, -{awm expl- erfe(vs/2

where s =00 /(0% + o’A). To build a sufficient statistic for the
decoding problem, we form every possible multiplicative
combination of different estimates in a vector p(r), according to

P(r) = (L, b(r), b(ry), B(R) - b(ry), e, b(r)-b(ry)--b(R)T  (3.4)

This expression is obtained by repiacing the "hard bits" 5,(i) in
the definition of the Hadamard column h; with the "soft" estimates
b(r) (c.f. [6]). It can then be shown that the expression for the
MMSE decoder becomes X(r) T- h(r), with

h(r) = f(r)-R,, - p(r) (3.5)
where R,, = E[h;h]]. The scalar function f(r) is defined as
f(r)=fmI-p(r)¥*', where m,=E[h,]. We name this
implementation of the MMSE decoder the Optimal Soft Hadamard
Column Decoder (SHCD-OPT). Since the SHCD-OPT is MSE-
optimal for all encoder entropies, we have found an optimal way of
doing joint amplitude estimation and VQ decoding. In case of full
encoder entropy (i.e. Pr(/ =i)=1/N, Vi), we have R,, =1 and
f(r)=1, giving the simpler expression

X(r)=T-p(r) (3.6)
for the decoder. This simpler form of the decoder is denoted the
Soft Hadamard Column Decoder (SHCD) and was studied in [6],
under the assumption of no channel fading. Since the SHCD is
optimal for a VQ having no redundancy at the encoder output, the
SHCD-OPT can be thought of as a modification of the SHCD to
account for a priori information, or redundancy, which can be
utilized to counteract channel errors.

Based on the recursive nature of the Hadamard matrix, an
algorithm for computing h(r) can be derived. We state this
algorithm as follows: Let {u}¥/3"~! be a sequence of row-vectors
of size 2”. Also, let g, denote b(r,,).

(0). Initialization: Set pq =Pr(I = n), Vn, and set m=1.
(1). WHILE m <k, set

n ‘:(l+gnr)#". 1+(l"gm)#2"+l:|
(1+gm)#m 1 o

(1 '“gm)ﬂm-l
for n=0,..,N/2" —1,and set m+1—m.

(2). Now h(r) = u? - {u?()¥", where u}(l) denotes the first entry
of the vector ..

This algorithm require an order of NlogN operations, meaning
that the calculation of h(r) is not a heavy task, in the general case.
What is then left, for decoding, is a matrix multiplication to obtain
X(r)

The Hadamard formulation of the optimal decoder has many
advantages. One is the explicit dependence on the bit estimates.
Soft information is often available in practical systems, and a
modification to the soft decoder will become reasonably
straightforward. Another major benefit is the introduction of the
transform matrix T. Studies of robust VQ for hard decision
channels have illustrated that the complexity can be significantly
decreased using a Hadamard approach (e.g. [9]). This reduction is
obtained if elements of h, and columns of T, are removed, giving
a constrained linear mapping formulation of the decoder. The
methods of [9] are fully applicable to our soft decoding problem.
In this paper, however, we will study the unconstrained mapping.

3.2 Encoder Design for a Fixed Decoder

There are several possible encoder structures. In this paper, we
treat two different approaches for the encoder design: The Robust
VQ (RVQ) approach, and the Channel Optimized VQ (COVQ)
approach [3] .

In the Robust VQ approach the Voronoi regions of a VQ
codebook, trained for a noiseless channel, are used as encoder
regions. The encoder is given a good index assignment (e.g. [2]) to
obtain channel robustness.

In the channel optimized approach the encoder/decoder pair is
Jjointly trained for a specific channel. The expression for the MSE-
optimal encoder regions are given by

S=&: (R, -R;)<2x7(m; -~ m ), i} 3.7

where R, = E[X(R)-X(R)"1/ =i] and m, = E[X(R)/ = i]. Using
an approach analogous to the generalized Lloyd algorithm for
ordinary VQ training, an encoder/decoder pair can be iteratively
designed [3, 6]. For the SHCD-OPT, and the general decoder of
e.g. [5], the expectations of (3.7) have to be calculated using
Monte Carlo integration. This must be done in each iteration of a
joint encoder/decoder design, making encoder design using (3.7)
quite complex in practice. It was illustrated in [6] that the training
is simplified if full encoder entropy is assumed and the SHCD is
used as decoder. Another approach simplifying the training is to
use the encoder of a COVQ optimized for hard decisions, with the
SHCD-OPT as decoder. In that case the COVQ should be
optimized for the expected value of the bit error probability [2].
This latter approach will be compared to the optimal encoder
design of (3.7) in section 6.

4. APPLICATION TO CHANNEL ROBUST IMAGE
CODING

We will now demonstrate the methods of section 3 for image
transmission. Since we have applications in wireless
communication in mind, we want to use an image coding
algorithm giving a low transmission rate. It is a well known result
that scalar quantization in tandem with an entropy code, such as
the Huffman code, can perform close to the rate-distortion limit.
This scheme is utilized in JPEG-like algorithms. However, entropy
coding is preferably avoided for noisy channels, because of error
propagation. Hence we use VQ to achieve low bit rate without
entropy coding. The method of vector transform image coding
(VTIC) is a good candidate for our purposes. This method was
introduced by Li and Zhang in [10]. We extend the VTIC approach
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of [10] to combined source-channel coding in the framework of
section 3. Other approaches for VQ in image coding can be found
in [11}.

Since we have a frequency domain coding approach, we can
obtain a lower bit rate by using different VQs for different
frequency regions. Hence, the frequency domain is divided into
three different regions: Low, medium and high frequency. These
regions are then coded with different VQs with the highest rate for
low frequencies. The frequency domain can be further subdivided
to obtain a more efficient utilization of the energy packing of the
transform. We use a Greedy approach for the bit allocation ([1] p.
234). Combined with a split training ([1] p. 361) this approach
gives a joint training and bit allocation. The simple procedure is:
(0) Each VQ is initialized with the mean of its training set; (1)
allocate one more bit to the VQ giving the highest distortion, by
splitting the codevectors of this VQ, and retrain; repeat (1) until all
available bits are allocated.

In our evaluations all frequency components, including the DC-
components, are coded and transmitted. We have chosen to use
overlapping windows to avoid "blockiness" due to erroneous
transmission of low frequency components. The price for the
windowing is a higher bit rate. Without windowing we end up at a
transmission rate of 0.34 bits per source pixel (bpp). With
windowing the equivalent transmission rate becomes 0.43 bpp.

As is usual in VQ design, expectations over the source statistics
have to be replaced with averages over a training set. We used a
training set consisting of nine 512 by 512 pixel images. The
images were stored at 8 bpp (gray scale).

5. RESULTS

In this section we present some results for transmitting images
over the Rayleigh fading channel. For PSNR-curves we have used
an evaluation set consisting of four 512 by 512 pixel images, and
for subjective comparisons we have used the image "Lenna”. All
test images were outside the training set. The average bit error rate
g for hard decisions can be expressed, in terms of the channel SNR
(CSNR) ¥ =0d2/0%, as

Y
q(7)—2[1 l+y]

We will specify channel quality either in terms of CSNR or by the
average bit error probability g.

5.1 Robust VQ

Three frequency domain VQs were trained assuming a noiseless
channel. The VQs were given good index assignments by means of
the FBS algorithm of [12]. Figures 5.1 and 5.2 below illustrate the
performance of our system when these VQs were utilized to define
the encoder, and the SHCD-OPT was used as decoder.

An evaluation over the set of 4 images is illustrated in figure
5.1. We can see that the gain of the SHCD-OPT is large, on the
order of 10 dB in CSNR, for bad channels. Tumning to fig. 5.2. and
comparing images (3) and (4), we can see that the soft decoding
counteracts large errors. The SHCD-OPT also introduces a large
general improvement over the hard decoding. Note the entire
quality gain is due to the modified decoder, since the same encoder
is used in the comparison. And, as we have discussed earlier, this
improvement can be obtained without notably higher complexity
by using the SHCD-OPT instead of hard decoding. Also note that
the transmission rate is the same in both cases, and there is no
redundancy of a channel code added.
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Figure 5.1. Evaluation of hard decoding versus the SHCD-OPT,
with the same VQ-codebook defining the encoder. The upper curve
(1) ilustrates RVQ encoding and the SHCD-OPT as decoder. The
lower curve (2) illustrates RVQ encoding with hard decision
decoding.

Figure 5.2. lllustration of the subjective performance when using
RVQ encoding with hard or soft decoding. Overlapping windows
have been used in images (3) and (4). Top left: (1) Original image.
Top right: (2) Coded image over a noiseless channel. Rate 0.34
bpp. PSNR 29.1 dB. Bottom left: (3) The SHCD-OPT as decoder.
Rate 0.43 bpp. q=0.001. PSNR=26.7 dB. Bottom right: (4) Hard
decoding. Rate 0.43 bpp. q=0.001. PSNR=21.8 dB.

5.2 Channel Optimized VQ

In this section we present results for COVQ-encoding with hard
and soft decoding. We have chosen to include an evaluation of
COVQ using an encoder optimized for hard decoding. In this way
we get an illustration of the effects of the decoding alone, since we
use the same encoder for hard and soft decisions. Training of a
COVQ with hard decoding is described in e.g. [3]. We also
provide a simulation of the SHCD-OPT as decoder with an
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encoder optimized for soft decoding (the expression for the
optimal encoder regions was given in (3.7)). In all our simulations
the encoder/decoder pair was trained for the CSNR for which it
was evaluated.

Figure 5.3 below illustrates the subjective performance by
means of decoded images. In this simulation an encoder optimized
for hard decoding was used. The CSNR corresponds to a bit-error
rate of g=0.05. In comparing images (1) and (2) of figure 5.3, we
can observe the ability of the soft decoding to counteract large
errors. A general quality improvement, with the SHCD-OPT, can
also be noticed. For a CSNR this low, the hard decisions of (1)
make the image quality to bad for most applications. However, the
quality of the SHCD-OPT of image (2) is acceptable, and most of
the important features of the image are regenerated correctly.

Figure 5.3. llustration of the subjective performance for a COVQ
encoder with hard and soft decoding. The same encoder was used
in both cases. The encoder was trained for hard decoding at the
error rate g=0.05. Overlapping windowing has been used in both
cases, giving the bit rate 0.43 bpp. Left: (1) Hard decoding,
q=0.05, PSNR=23.09 dB. Right: (2) The SHCD-OPT as decoder,
q=0.05, PSNR=25.50 dB.
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Figure 5.4. Evaluation of COVQ encoding with hard and soft
decoding. The upper curve (1) illustrates the SHCD-OPT as
decoder, with an encoder trained for that decoder. The middle
curve, (2), illustrates the SHCD-OPT as decoder, with an encoder
trained for hard decisions. The lower curve, (3), shows the
performance of the same encoder as in (2), but with hard
decoding. In all cases the system was designed for the same CSNR
as for which it was used.

Figure 5.4. above illustrates the differences in objective
performance between COVQ with hard and soft decoding.
Included in this simulation are: (1) An encoder trained for the
SHCD-OPT with soft decoding; (2) an encoder trained for hard
decisions with the SHCD-OPT as decoder, and; (3) a COVQ with
hard decoding. We can see that the relative gain of the soft

decoding is smaller than that of figure 5.1. But at small CSNRs the
difference becomes significant, a fact that was also illustrated in
figure 5.3. For bad channels the gain of the soft decoding is
approximately 5 dB of CSNR. Note that the performance of the
SHCD-OPT degrades smoothly for low CSNR, while the hard
decisions show a quite rapid performance degradation below a
CSNR of about 15 dB. Also note that there is no great difference
between (1) and (2), suggesting that an encoder trained for hard
decisions suffices in most cases. This is a notable result for
practical applications, since there is a large gap in complexity
between training COVQ encoders for hard decisions and for the
SHCD-OPT. Observe that same encoder is used in cases (2) and
(3), consequently the difference between (2) and (3) is only due to
the different decoders. The proposed scheme of (2) is relatively
simple to train, and to use, since the COVQ is easy to train for hard
decoding. Thus we have presented a moderate complexity method
for COVQ over a Rayleigh channel that performs well for quite
severe channel imperfections.

6. CONCLUSIONS
The major conclusion of this work is that we have found a method
for combined source-channel image coding over a Rayleigh fading
channel, with a low transmission rate since there is no redundancy
of a channel code. With this method we obtain an acceptable
quality for as low CSNR as that corresponding to a average bit
error probability of 5 percent.
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