A HASHING-BASED SCHEME FOR ORGANIZING VECTOR
QUANTIZATION CODEBOOK

Chang Y. Choo, Erik Kristenson

Dept. of Electrical Engr.
San Jose State Univ.
San Jose, CA 95192-0084
cychoo@sparta.sjsu.edu

ABSTRACT

One of the problems in vector quantization (VQ) 1s
its relatively long encoding time especially when an ez-
haustive search is made for the codevector. This pa-
per presents a hashing-based technique to organize the
codebook so that the search time can be significantly re-
duced. Hashing gives the speed advantages of a direct
search, while maintaining a codebook of reasonable size.
Ezperiments show that hashing-based VQ sustained im-
‘age quality as the encoding time was reduced, while full
search VQ suffered greatly. For example, for 2 x 2 vec-
tors and with 1024 codebook entries, encoding time was
reduced by a factor of 10 without significant loss of im-
age qualily.

1. INTRODUCTION

One of the problems in vector quantization (VQ) is its
relatively long encoding time especially when an ex-
haustive search is made to find the best codevector
for each image vector. A number of techniques have
been proposed to reduce the encoding time which in-
clude tree-structured VQ, finite-state VQ, and cache
vQ [2,34,5,6].

Hashing is a database search technique, where the
records are ordered according to a hashing function [1].
The hashing function is a formula, whose input is a por-
tion of the record, called a key, and whose output is an
index to the database. Hashing gives the speed advan-
tages of a direct search, while maintaining a database
of reasonable size.

An example of a hashing based database could be
a set of customer records for a cash machine. The key
is a 19 digit number of the ATM card. To find the
customer’s record, an exhaustive search can be made
through the database until the key on the card matches
that of the record, resulting in an unreasonably long
search time. An alternative would be to put the 19-

2495

Nasser M. Nasrabadi

Dept. of Electr. & Comptr. Engr.
State Univ. of New York
Buffalo, NY 14260

Xiaonong Ran

System Technology Group
National Semiconductor Corp.
Santa Clara, CA 95052

digit number through a hashing function, which would
create an index with a smaller range. The hashing
function could, for example, be something as simple as
a mask which preserves the 5 least significant digits of
the key. Since the range is smaller than the original
key, more than one key may hash to the same index.
When this happens, a collision is said to have occurred.
Because of collisions, the index points to a “bucket”
where more than one record may reside. Accessing a
customer’s record now localizes the search to the con-
tents of a bucket.

Hashing is used extensively in database applica-
tions to speed up search operations, but has yet to
be formally introduced to VQ encoding, which is of-
ten criticized for its long encoding time. In this paper,
we present a hashing-based technique to organize the
codebook so that the search time can be significantly
reduced.

This paper is orgamzed as follows. In the next sec-
tion, the hashing based codebook organization is de-
scribed in detail. In the following section, encoding
procedure of the hashing based VQ is described. Some
experimental results are presented in the following sec-
tion, along with discussions. Concluding remarks are
made in the last section.

2. HASHING BASED CODEBOOK
ORGANIZATION

Hashing function maps input image vectors to the in-
tegers equivalent to the codebook indices. When the
hashing technique is applied to VQ encoding, a por-
tion of the vector is used as the input to the hashing
function, and the output is a codebook index. Due to
the likelihood of collisions, this index will point to a
bucket in the codebook, which consists of a group of
codevectors. One example of hashing function for VQ
is to take the most significant bits of some or all pixels

0-7803-2431-5/95 $4.00 © 1995 |[EEE

(16-pixel vector/256-entry codebook)

oD ECECEECEEEERE

[Tt JoJtfo] i
(8-pixel vector/512-entry codebook)

88!90]95]99’;17E|8q651

FYYYVYYY
[t ifoTiTofo]:}

Figure 1: Illustration of MSB (Most Significant Bit)
hashing function.

in the input vector to create a codebook index as shown
in Figure 1. We will call it the MSB hashing function.

In order to use hashing during encoding, the code-
vectors that have been generated after training must
first be reordered in the codebook according to the
hashing function. In addition, provisions must be made
for vectors that collide into the same bucket, both when
organizing the codebook and when searching for an en-
try during the encoding process. The vectors in this
bucket may be rearranged into a linked list, where only
the head vector will reside at the hashed index. Other
entries will be stored at unused indices, and the vec-
tors corresponding to each individual bucket will be
grouped together via pointers. To maintain a fixed
codebook size, the number of vectors in a bucket mul-
tiplied by the number of buckets must be, by definition,
a constant.

In order to remap a standard codebook into one
that is configured for the hashing algorithm, additional
information is needed besides the codebook vectors.
This additional information is attached to every vec-
tor by means of a structure with the format shown in
Figure 2. Note that only the codevectors are needed
during the decoding sequence. This helps reduce the
amount of side information that is sent along with the
compressed image. During encoding, only the white
and light grey areas of the structure shown in the fig-
ure are needed (as indicated by the legend), while the
entire structure is needed when the codebook is being
reorganized from an original codebook, to a hashing
based codebook.

When a codebook generation is complete, the code-
book is then reorganized into an array of structure ele-
ments. This organization is needed, so that during the
encoding process, an input image vector will be able to
locate the corresponding codevector by using only the
hashing formula. Described below are the elements of
the structure:

[16-Byie vector [rotientc fnext todex

Set when the hashivector) = index —j

Set when the bin is occupied -J

Points to the codebook index where the bumped
entry was storea

Number of times eatry was used to code fraining images

Used when standard codebook is mapped to structured codebook DD &
Used when Coding Images DD
Used when Decoding Images D

Figure 2: Elements of a hashed codebook structure.

count Since collisions may occur when more than one
vector maps to a particular bucket, a linked list
will be created. It is desirable to have the most
popular codevector at the head of this list. The
most popular codevector is the one most often
used by the set of training images, and has the
maximum count value.

no_vacancy Once a codevector is mapped to a par-
ticular bin in a particular bucket, the no.vacancy
flag is set. This prevents another vector from
overwriting the current one.

next_index A linked list is created when more than
one codevector map to the same index. When
this happens, the bumped vector must search high
and low for a vacant bin. When one is found, the
bumped vector will be stored there, and the pre-
vious vector’s next_index field will be updated to
point to the bumped vector.

authentic During the codebook remapping process,
when a vector is mapped to a vacant bin, it is
stored there, and the authentic field is set to 1.
If another vector maps to the same bin, then a
neighboring bin is found, and the vector is stored
there. This vector is now known as the tail of a
linked list, while the first vector is the head of the
linked list. The two vectors are said to be in the
same bucket.

Figure 3 shows the flow required to map a codevec-
tor from a standard codebook into a structured code-
book. For each codebook entry, the hashing function
is applied which results in an index to a particular bin.
The codevector is mapped to this bin if it is empty, as
indicated by a clear, no_vacancy bit. A collision has
occurred if the no_vacancy bit is set, creating the need
to find a vacant, neighboring bin to store the bumped
vector in. At this point, it is not known whether the
vector that resides in the bin is the head of a linked
list, or it is an element of some other linked list. If

2496

hash Codebook entry

scan up and down
until authentic = 1
Jump to the bia
that has the smalles§
MSE between hash
and index

Is TSNe Follow index till
.,“ lea index is at leaf

/

Search down bins till
vacant bin is found

\J

Update bin, and leaf’s
next address pointer

Figure 3: Remapping standard codebook to hashing
based codebook.

it is the head, as indicated by the authentic bit be-
ing set, then the current vector should attach itself to
this linked list. All vectors that are in a linked list are
considered to be in the same bucket. If the authentic
bit is not set, then the vector residing at the index is
an element of a different linked list, (i.e., belongs to a
different bucket). Since it is conceivable that the head
vector of the linked list in question could have radi-
cally different characteristics than the current vector,
it is not advisable to add it to the bucket. Instead, a
search is made to find the nearest head of a linked list,
and to add the current vector to this bucket instead.

When adding an entry to a bucket, it is desirable
to place the most popular vector at the head of the
list. This is because during the encoding process, the
search will begin with the head vector, and continue
with other entries in the bucket only if the first vector is
not similar enough to the image vector. The flowchart
in Figure 3 shows that the vectors in a linked list will
be ordered from most popular to least popular.

3. HASHING BASED VQ ENCODING

Figure 4 shows the flowchart of the encoding process.
VQ encoding usually starts the search in the codebook
at index 0. With a hashing algorithm, an image vector
is hashed to produce an index where the search will
begin. The search is complete when the mean square
error between the codevector and the image vector is
less than or equal to a specified threshold.

Before the search begins, the authentic bit is checked
to confirm that the entry is the head of a linked list. If
it is, then all entries in the bucket are searched until the
MSE is less than or equal to the threshold. Otherwise,
it is understood that we have hashed to the middle, or
the end of a linked list. In order to find a codevector
that is similar to the image vector, a search must be
made both high and low for the head of a linked iist.
This is where the best codevector will reside. ‘

If there are no vectors in the bucket that satisfy the
threshold requirements, then the search is continued
in the neighboring buckets. As part of the algorithm,
the minimum and the maximum buckets are actually
neighbors, so the best codevector is not far from the
starting search point. If the threshold is set too high
during the encoding process, then an exhaustive search
will be made of the codebook, and the index whose
vector had the lowest MSE will be coded. The results
will be identical to the full-search VQ encoding process.

4. EXPERIMENTAL RESULTS

A C program was written to simulate the hashing-based
VQ scheme. Various codebooks with different size and
vector dimension were trained using the LBG algorithm
[4]. Two representative results are presented in the
following.

As shown in Figure 5, for 2 x 2 vectors and with
1024 codebook entries, encoding time was reduced by
a factor of 10 without significant loss of image quality
(less than 1 dB). For 4 x 4 vectors and with 256 code-
book entries, the savings in encoding time dropped to
a factor of 3 with less than 1 dB degradation in image
quality (see Figure 6). Note that on both graphs the
full-search VQ is represented as the endpoint on the
top right of the curves.

5. CONCLUSION

Hashing-based VQ is a logical step in the right direc-
tion to reduce encoding times. Experiments show that
hashing-based VQ sustained image quality as the en-
coding time was reduced, while full-search VQ suffered

2497

hash [mage Vector

| Find best entry
in linked list

A

Fiad nearest

authentic bin.
both hi and lo

Y

Find best entry
in hi jinked list

threshold?

Find best entry
in lo linked list

threshold?

Figure 4: Hashing based VQ encoding.

g

&8 8 & 3

w
1=
T

of MSE muliiplications
Millions
8

3

F

0

(=3

10

20 25 30

SNR (dB)

35

_o HASH (# of MSE calcs) _ HASH (encoding time)

CPU time (sec)

Figure 5: Performance of hashing-based VQ.

(2x2 vectors)

20 40
wn
a 35
2 H
5 15 30~
2 3
=S 52
= 2
= » B
= =
w 15 2
%) o
=z s 0
3
e s

0 0

15 16 17 18 19 20 21 22 23 24 25 26

SNR (dB)
- HASH (# of MSE cales) - HASH (encoding time)
Figure 6: Performance of hashing-based VQ.
(4x4 vectors)

greatly. The results were consistent across the various
vector lengths.

Although only one type of hashing function (i.e.,
MSB) was explored in this paper, future work will in-
clude use of different types of hashing function.

(1]

2]

2498

6. REFERENCES

E. Horowitz, Fundamentals of Data Structures in
Pascal, Computer Science Press, 1984, pp. 452—
467.

C. Y. Choo and N. M. Nasrabadi, “Evaluation of
Design Parameters for a Cache Vector Quantiza-
tion System,” Proc. International Conference on
Image Processing, Austin, Texas, November 1994,
pp. 129-133.

Y. Feng, N. M. Nasrabadi, and C. Y. Choo,
“A Self-Organizing Adaptive Vector Quantization
Technique,” Journal of Visual Communication
and Image Representation, Vol. 2, No. 2, pp. 129-
137, June 1991.

A. Gersho and R. M. Gray, Vector Quantization
and Signal Compression, Kluwer, Boston, Mas-
sachusetts, 1991.

R. M. Mersereau, M. J. T. Smith, C. S. Kim,
F. Kossentini, and K. K. Truong, “Vector Quan-
tization for Video Data Compression,” in Mo-
tion Analysis and Image Sequence Processing, M.
I. Sezan and R. L. Lagendijk (ed.), pp. 257-
283, Kluwer Academic Publishers, Norwell, Mas-
sachusetts, 1993.

N. M. Nasrabadi, C. Y. Choo, and Y. Feng, “Dy-
namic Finite-State Vector Quantization of Digital
Images,” IEEE Transactions on Communications,
Vol. 42, No. 5, pp. 2145-2154, May 1994.

