A VARIANT OF ADDRESS VECTOR QUANTIZATION FOR IMAGE
COMPRESSION USING LOSSLESS CONDITIONAL ENTROPY CODING

Wenshiung Chen
Dept. of Electrical Engineering
Feng Chia University

ABSTRACT

In this paper, a variant of address vector quantiza-
tion (ADVQ) algorithm for image compression using
conditional entropy lossless coding is presented. The
motivation of the proposed approach is derived from
Shannon’s basic entropy concept that conditional en-
tropy is less than joint entropy.

1. INTRODUCTION

Recently, data compression (or source coding), es-
pecially for image and video, has boomed due to the
demands in some applications, such as HDTV and
multimedia. There has been many coding techniques
developed in the past two decades. Vector quanti-
zation (VQ) has been found to be an efficient coding
technique due to its inherent ability to exploit the high
correlation between the neighboring pixels. Some ex-
cellent survey articles and books are given in [3]. VQ
is widely used in image/video and speech compression
applications, because simple table look-up encoding
and decoding procedures may be used.

Many VQ coding techniques which exploit the in-
terblock correlation have been developed [3]. Re-
searchers have introduced finite state VQ (FSVQ) [2],
Adaptive VQ (AVQ) with a dynamically refining code-
book, called the Gold-Washing (GW) algorithm [1],
address VQ (ADVQ) [5] [6], and so forth. Informa-
tion theory claims that conditioning reduces entropy.
Based on this, a new variant of address VQ for im-
age compression is introduced which exploits the in-
terblock correlation .of the statistical redundancy be-
tween the blocks via the conditional probability. The
lower bit rate is obtained without introducing any ex-
tra coding distortion so that the coding scheme can
be viewecF as a lossless coding technique.

2. REVIEW OF ADDRESS VQ

Address VQ [5] is a combination of a standard VQ
technique with a lossless coding technique. The basic
idea of the ADVQ coding method is based on the joint
entropy concept.

However, tll1)e ADVQ coding method has some dis-
advantages. One of them is the computational com-
plexity of computing the score parameters in the en-
coder and reordering the address-codebook in the en-
coder and the decoder. Another one is the necessity of
transmitting the statistics of reordering. In [5], they
ignored the statistics transmission. Due to the use of
0.06 bits/pixel for this purpose, the performance gain

2483

En-Hui Yang and Zhen Zhang
Dept. of Electrical Engineering-Systems
University of Southern California

Slh'%ﬂd be 0.437/0.316 = 1.38 (or 72.31%) rather than

3. A VARIANT OF ADDRESS VQ

Address VQ is a block code while our coding scheme
can be viewed as a conditional code. The basic idea of
the new variant of ADVQ is based on exploiting the
strong interblock correlation as well as the statistical
redundancy via the knowledge of the conditional prob-
abilities. Information theory claims that conditioning
reduces entropy; that is, H(X]|Y) < H(X), where X
and Y are two random variables. Intuitivelty, the the-
orem says that Y can reduce the bit rate for coding
X. The encodingbprocess consists of two phases: lossy
coding followed by lossless coding. First, the coded
image is first decomposed into 4 x 4 sub-image blocks.
Each 4 x 4 block is then coded block-by-block sequen-
tially in the order from tog to bottom, and from left
to right by using VQ matching in the LBG-codebook.
The result of this phase is a sequence of integer index
numbers. In the next phase, a lossless coding on the
set of the index numbers is performed. This phase
does not affect the resulting distortion produced in
the first phase. In this algorithm, we utilize the con-
ditional probability which 1s viewed as a priori knowl-
edge. The knowledge of the previously coded blocks
is utilized for coding the current block. The idea for.
coding is described as follows in detail.

Suppose that {X}, }?=1;—1 is the 2-D array of blocks
to be coded and {Iii}?zly—_-l

ciated indexes. Three indexes of the_{greviously coded
blocks as the prior conditions are uti

1s the array of the asso-

ized to code the
current block. In geometric terms, X; j_1 is the sym-
bol preceding the “current” symbol X; ;, X;_1,; is the
symbol above X; ; in a 2-D raster scan of the image,
and X;_1 j-1 is the symbol nearest to X; ; in the upper
left direction. These three symbols can be expected
to have a strong influence on the current symbol X; ;.
Since the three conditions are known at the encoder
and the decoder, no statistics transmission is needed.
Assume X, X», and X3 have already been coded and
represent the upper-left (diagonal) neighboring block,
upper (vertical) neighboring block, and left (horizon-
tal) neighboring block, with respect to the currently
coded block X4, respectively (Fig. 1(a)). Let Iy, Ia, I3,

ER

and I, be the indexes which are associated with blocks
X1, X5, X3, and X4, respectively. Specifically, there
are four types of index-matching used for coding the
current block, as shown in Fig. 1. In Fig. 1(c), type
B utilizes Iz and I3 only. Whereas, type C and type

0-7803-2431-5/95 $4.00 © 1995 |IEEE

D, as shown in Fig. 1(d) and Fig. 1(e), respectively,
utilize only I or Is.

The proposed algorithm consists of two codebooks:
a LGB-codebook Crpg and four distinct and inde-
pendent 2-stage index-codebooks Ca,Cs,Cc, and Cp
which are associated with type A, type B, type C, and
type D, respectively. The basic structure of the index-
codebook is a 2-stage codebook, (Fig. 2(a)), where the
first stage is called the “primary indez-codebook” de-
noted by Cp, and the second is called the “secondary
indez-codebook” denoted by Cs. In our design, the
Cp 1s a large codebook with size Np. The codevector
in the Cp is made up of two fields: the first field is
an index-codevector which contains k;, indexes which
may be any s%eciﬁc combination of I;1, iz and I,
where k;, is the dimension of the index-codevector
which depends on what type of index matching is used.
Obviously, k;, = 3,2,1, or 1 for type A, B, C, or D, re-
spectively. The second field is a pointer which points
to the Cs. All of the Cs’s are small codebook, with
the variable sizes from 1 to Ng, in which each vector
contains only one index component I;4.

The four types of index-matching operations and
their corresponding index-codebooks are in detail de-
scribed as follows:

e Type A: 3-Index Matching. In this type, three
prior indexes are pre-matched (see Fig. 1(b)).
The index-codevector is made up of 3 indexes,
I,'l, Iig, and Iig; 1.e.,I,' = (Iil, I,‘g,I,'3) (Flg. 2(&))
The encoding operation (or matching criterion) is
as follows. If the three indexes I, Is, and I3 are
totally matched with i-th index-codevector with
the index components I;1, [;2, and I3 in the Cpa,
then prior condition is me}tcl’led. The procedure
éoes through the pointer into the corresponding

sa. If the index I4 is matched with one of the
codevectors I;4 in Cs, then index matching occurs.
This means that a variable-length code rather
g?an index code, is used to code the current block
4.

e Type B: 2-Indez Maiching. Type B utilizes two
prior indexes for pre-matching (see Fig. 1(c)).
The structure of the Cp is similar to that of type A
except I; = (I;2, Iiz). The encoding operation is
almost the same as in type A but only two indexes
in the primary index-codebook are compared.

. Tylpe C: Vertical-Indez Matching. Type C utilizes
only one prior index, which is the index of the

upper neighboring block, for pre-matching (see
Fig. 1(d)). Similarly, the structure of the Cc is

similar to that of type A except L= (Li2)-

utilizes only one prior index, which is the index of
the left neighboring block, for pre-matching (see
Fig. 1(e)). The structure of the Cp is similar to

that in type A except I = (Ii3)-

e Type D: Horizontal-Indez Matching. Type D also
i

r The flowchart of the encoding process is shown in
ig. 3.

4. INDEX-CODEBOOK DESIGN

4.1. Index-codebook Design

The index-codebooks are generated off-line durin% the
training process. We extract all the possible four-
index combinations of the four neighboring blocks oc-
curring together in the 8 x 8 blocks. The entries in the
index-codebook are called the index-codevectors.

In the simulation, only those of the index combi-
nations whose occurrence frequency is larger than a
threshold value are sieved as the index-codevectors in
the index-codebook. As a result of the high correlation
between these small blocks, the sizes of the Np, would
be much smaller than the total number of possible in-
dex combinations. For example, if the LBG-codebook
size is N = 128, and the dimension of the codevectors
in the primary index-codebook (for type A) is kiy = 3
and the dimension of the codevectors in the secondary
index-codebook is 1, then the total number of possible

combinations is N(¥sw+1) = 1283+1) = 268,435, 456.
However, the index-codebook obtained by the training
data is much smaller than this value.

In ADVQ, reordering address-codebook 1s an on-
line operation. It is advantageous that there is no
reordering operation for the index-codebook needed
in our algorithm. Thus, the grocessmg time for re-
ordering is saved. It is (fossi le to limit the size of
the index-codebook to a desired size by only retaining
the most probable block (or index) combinations, and
thus to reduce the computational complexity.

A simple data structure for constructing the index-
codebook is sequential table. The procedure first
searches the table by fully-matching criterion until the
entry whose index-codevector Iy, Lia, and I;3 are to-
tally matched to the input index combination Iy I,
and I3 is met, and then go into the corresponding
secondary index-codebook associated with the entry.
Thus, it is important that reducing the computa-
tional complexity for searching in the primary index-
codebook.

4.2. Tree Structure for Reducing Time Complexity

One efficient way for reducing the complexity of the in-
dex match searching is to adopt a 4-level tree structure

for Ca, as shown in Fig. 2(b). The upper 3 levels be-

long to primary index-codebook. The lowest level be-
longs to secondary index-codebook. On the first level,
only one node exists and is composed of N fields where
eacﬁ contains a pointer which may point to either null
or a same type node on the second level. For each node
on the second level, it is the same as on the first level.
For each node on the third level, it may point to either
null or a secondary index-codebook with variable size.

The number of operations for searching primary
index-codebook is at most 3 index integer comparisons
and 3 pointer pass operations. Similarly, the number
of index integer comparison operations for searching
secondary index-codebook is proportional to the size
of the codebook (e.g., maximum is only 5 in our sim-
ulation). Thus, at most 8 operations of index integer
comparison is sufficient for lossless index matching.
Ex Ecitly, the extra computational complexity caused
by lossless index matching is very low. gimllarly, a J-
level tree with the same structure as Ca is constructed
for Cg and two 2-level trees are constructed for Cc and

D-
5. EXPERIMENTAL RESULTS

In order to compare the coding fidelity among
the different techniques, the peak signal-to-noise ra-

2484

Table 1: Simulation results

0 [Stendard V@ | MV [ADVQ (PM/AVG) | Suiside T Tnside]
([Tmage | Lena | peppers | Lena | peppers | Lena | peppers | Lena | peppers | Lena | peppers ||
Block Size 4 X 4 4 X 4 4 X 4 4 X 4 4 X 4 4 X 4 4 X 4 4 X 4 4 X 4 4 X 4
NLBG 128 128 128 128 128 28 128 128 128 128
Npa (Type A) — — — — — — 10059 10059 80035 80035
Npp (Type B) - — — —— — -— 10087 10087 68055 58055
Npc (Type C) —_ — — —_ — — 163 163 822 822
Npn (Type D) — = = = = — 156 166 330 330
bpp 0.437 0.437 — -— 0.316 0.320 0.248 0.236 3.105 0.108
CR 18.28 8.28 — — 25.32 25.00 32.25 33.80 75.87 T5.44
MSE 93.00 141.00 47.00 80.00 56.88 87.54 55.24 85.36 55.24 85.36
PSNR 28.45 26.64 31.41 29.11 30.58 28.71 30.71 28.82 30.71 28.82

tio (PSNR) and mean-squared-error (MSE) are used

5.1. LBG-Codebook Design

We have extended PM/RVQ [5] to a fine-tuned ver-

sion that utilizes more preceding coded context and
extrapolation to predict a more precise estimation for
the mean. Let mp, and my2 be the mean of four left-
most and right-most tpixels of the block X3, m,; and
my2 be the mean of four upper-most and lower-most
pixels of the block X5, and z4; and z49 be grey level
of the upper-left pixe‘f7 and the ﬁower—riﬁﬁxt pixel of the
block X;. The estimated mean of the block X, is
computed by

1
= E((—mhl + 3mpa + —my1 + 3Imy2) - 4

+ (—z41 + 3z42)).

The LBG-codebook is designed by using the well-
known LBG algorithm [4]. The size of the LBG-
codebook is N = 128 (7 bits).

5.2. Index-Codebook Design

The index-codebooks are off-line designed during the
training session. 18 training images have been used
to count the occurrence frequency of each index-
codevector. Those index combinations that the oc-
currence frequency is more than the threshold value 1
have been extracted to constitute C, and Cp. Those
index combinations that the occurrence frequency is
more than the threshold value 100 have been extracted
to constitute Cc and Cp. In the simulation, Npy =
10,059 NPB = 10,087,Npc = 163, and NPD = 166.
Since the number of bits used for coding each block
by LBG-codebook is 7 bits only, this implies that the
size of the secondary index-codebooks has to be lim-
ited and not more than 5. Hence, we select the follow-
ing parameters: Nga; < 5, Ngp; < 5, Nsci < 4, and
Nsgp;i < 4, for each ¢,1' < 1 < Np. In the secondary
index-codebook, a variable-length code like Huffman
code is designed and the set of codes is shown in

Fig. 2(a).

5.3. Experimental Results

For £k = 4 x 4 = 16, there will be a total number
of 16,384 blocks needed to be coded. The test im-
ages are “Lena” and “peppers”. For “Lena”, we can

evaluate R = (0.248 bits/pixel (compression ratio, CR
= 32.25). Similarly, we can also evaluate R= 0.236
bits/pixel (CR = 33.80) for “peppers”. The summary
of the simulation results is shown in Table 1. The cod-

ing bit reduction are 0.248/0.437 = 56.75% for “Lena”
and 0.236/0.437 = 54% for “peppers”, respectively. In
other words, the performance gain of our algorithm are
1.95 for “Lena” and 1.98 for “peppers” with respect to
the standard VQ’s. The computational complexity is
much lower than that of ADVQ algorithm. The con-
structed image are shown in Fig. 5(a) and Fig. 5(b).

6. CONCLUSION

In this paper, we have introduced a variant of the
ADVQ, wﬁere interblock correlation and conditional
entropy concept are exploited to reduce the bit rate
below what is possibly achieved by a standard memo-
ryless VQ without any extra distortion. We conclude
tﬁat the proposed algorithm is superior to the ADVQ
in performance and complexity.

References

[1] W. S. Chen, Z. Zhang, and E.-H. Yang. A hy-
brid adaptive vector quantizer for image coding
via Gold-Washing mechanism. submitted to JEEE
Trans. on Image Processing, 1994.

[2] J. Foster, R. M. Gray, and M. Ostendorf Dun-
ham. Finite-state vector quantization for wave-
form coding. IEEE Trans. on Information Theory,
IT-31(5):348-359, May 1985.

[3] A. Gersho and R. M. Gray. Vector Quantization
and Signal Compression. Kluwar Academic Pub-
lishers, 1992.

[4] Y. Linde, A. Buzo, and R. M. Gray. An algorithm
for vector quantizer design. I[EEE Trans. on Com-
munications, COM-28(1):84-95, Jan. 1980.

[6] N. M. Nasrabadi and Y. Feng. Image compres-
sion using address-vector quantization. IEEE
Trans. on Communications, COM-38(12):2166~
2173, Dec. 1990.

[6] N. M. Nasrabadi and Y. Feng. A multilayer ad-
dress vector quantization technique. IEEE Trans.
on Circuits and Systems, CAS-37(7):912-921, Jul.
1990.

A0

np_pr-le(} upper
i Raponine vQ
') index i the en
% | x, L] L L I, e
1| A2 NI | { Type A Type B Type C TypeD | indekecodebook

- - A N
(l’ X3)i:;s 13 4 I3_".Y4 Y4 I3 "‘4 g% no no =§ no no
'.‘.“,_m.i.., tobe coded match ? match ? match ?
(a) ncighboring (b) Type A © Type B (@) Type C (e) Type D l yes l yes l yes l yes Y
relation index
O |- B = [l [Fa]
Figure 1: Four types of index matching. match ? match ? match ? match ?
‘ yes yes yes yes
code code +index code code +index code code +index code code +index

. Secondary Variable-Length
Primary Index-Codebook Index-Codebook Code

Taa] —
! [111 112| I13| oA

Figure 3: Flowchart of the variant ADVQ encoding
42| —> 10

114,3 —> 11

2 liga| -—> 1110

Nusi| Iias| —> 11110

.
. (No match) —-> 11111
.
.

kgl — 0

i Iill Iizl Ii3| 0—/._'_ — 10
. Nuss
M (No mak) ——> 11...
:

{1

(No match) —> 1 (NoMaich)

* Primary Index-Codebook
Ist-level Il [Tm—{m"ll :::::: (b)
NS [\E Figure 4: Number of blocks coded by the LBG-
2nclevel codebook and the index-codebooks. (a) “Lena.” (b)

“peppers.”

v

4th-level Secondary Index-Codebook ¥

(b)
Figure 2: (a) The structure of the index-codebook (for

the case of type A only). (b) Tree structure of the
index-codebook (for the case of type A only).

(a)
Figure 5: The constructed images. (a) “Lena”:
bpp=0.248, MSE=55.24. (b) “peppers”: bpp=0.236,
MSE=85.36.

2486

