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ABSTRACT

The optimal design of quadtree-based vector quantizers is
addressed. Until now, work in this area has focused on
optimizing the quadtree structure for a given set of leaf
quantizers with little attention spent on the design of the
quantizers themselves. In cases where the leaf quantizers
were considered, codebooks were optimized without regard
to the ultimate quadtree segmentation. However, it is not
sufficient to consider each problem independently, as sepa-
rate optimization leads to an overall suboptimal solution.
Rather, joint design of the quadtree structure and the leaf
codebooks must be considered for overall optimality. The
method we suggest is a “quadtree” constrained version of
the entropy-constrained vector quantization design method.
To this end, a centroid condition for the leaf codebooks is
derived that represents a necessary optimality condition for
variable-rate quadtree coding. This condition, when iter-
ated with the optimal quadtree segmentation strategy of
Sullivan and Baker results in a monotonically descending
rate-distortion cost function, and consequently, an (at least
locally) optimal quadtree solution.

1. INTRODUCTION

Natural images typically consist of regions with widely vary-
ing content and activity that often frustrate coding efforts.
Because of these nonstationarities, it is desirable to find a
segmentation that allocates less bits to homogeneous neigh-
borhoods and more bits to areas containing edges and tex-
ture. When this strategy is adopted, the segmentation
structure along with the guantization information must be
specified to the decoder in order to reconstruct the coded
image. One widely used and successful segmentation scheme
that can be easily transmitted due to its compact nature is
the quadtree data structure {1].

The quadtree data structure is a method for hierarchi-
cally decomposing an image into distinct, nonoverlapping
regions of varying dimension. For example, an image block
of size M - 2% x M - 2% can be decomposed into an L level
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hierarchy ranging from 4% leaf nodes of size M x M to a
single leaf of dimension M - 2L x M . 2L (see Figure 2).
When used for coding, an image is quantized using a set
of codebooks matched to the dimensions of the leaf nodes.
Until recently, the determination of the quadtree decom-
position has been limited to methods that are heuristic in
nature [2, 3, 4, 5]. For example, in the top-down (splitting)
approach [3], starting from the largest possible block, a pre-
defined rule is employed to determine whether a given block
should be quantized using a single quantizer, or whether
it should be decomposed into four smaller subblocks to be
quantized independently. In contrast, the bottom-up (merg-
ing) construction [2, 4, 5] begins with the smallest possible
blocks. Using a predefined criteria, subsequent judgments
are made whether any adjacent four subblocks should be
merged into a single block to be quantized instead—given
that all four subblocks have been previously merged.

While both of these techniques are intuitively appeal-
ing, they do not determine the optimal quadtree structure
in the sense that overall distortion is minimized subject to
a constraint on the overall rate. This difficulty was recently
surmounted by Sullivan and Baker [6] in which a Lagrangian
formulation similar to that of the generalized BFOS algo-
rithm [7] was employed to determine the optimal structure
for a given set of quantizers—including the overhead infor-
mation to specify the tree. Using the nested nature of the
quadtree segmentation, this technique eliminates the ne-
cessity of exhaustively searching over all possible quadtree
structures.

However, the optimality of this approach is limited by
the quality of the leaf codebooks. In [6], as with most pre-
vious methods, codebooks for each of the varying dimen-
sions are designed without regard for their role as part of
the overall quadtree structure. For cases in which an at-
tempt is made to reflect the role of the codebooks, they
are heuristic and consequently suboptimal [3]. For the best
results, leaf codebooks should reflect the class of the im-
age to which they are called on to represent. Intuitively
(and as evidenced by experimental results), we expect that
larger block-size codebooks should represent smooth sec-
tions, while codebooks for smaller blocks should be targeted
for high activity regions involving edges and texture. In any
event, for overall optimality, joint design of the quadtree
structure and the ieaf codebooks must be conducted. To
this end, we propose an iterative procedure in Sections 2
and 3 for the design of variable block-size quantizers (and
their respective variable length codes) that produces a lo-
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cally optimal quadtree solution. This solution is achieved
by jointly considering the design of both the leaf codebooks
and the quadtree structure, and viewing the overall prob-
lem in an entropy-constrained product code framework [8].
Furthermore, in Section 4 we provide experimental evi-
dence to demonstrate that the optimal quadtree structure
for these codebooks can provide significant rate-distortion
improvement over codebooks designed without considering
the quadtree decomposition.

2. OPTIMAL QUADTREE CODING

Given a subimage of size M - 2% x M - 2%, quadtree coding
can be viewed as vector quantization (VQ) with a single ef-
fective codebook C. This effective codebook is constructed
using variable size code vectors as building blocks from a set
of L leaf codebooks {Ci; i = 1,...,L}. Moreover, the leaf
codebook C; for i = 1,..., L, consists of M; x M; dimen-
sional code vectors, where M; = M - 21"+ As a result,
each element (or code vector) in the effective codebook C
corresponds to a particular quadtree tiling of the subimage
using variable dimension code vectors selected from the leaf
codebooks of appropriate size.

Now, consider a given set of image training data T, par-
titioned into K blocks of size M - 2L x M -2*. With regard
to optimal quantization, our objective is to minimize the to-
tal distortion D using a structurally constrained, quadtree
codebook C subject to a constraint on the overall rate R. In
terms of entropy coding, we assume a one-to-one mapping
from every code vector y in the leaf codebooks {C;} to a
uniquely decodable variable length codeword whose length
is specified by I(y). For notational simplicity, we reparti-
tion the original training data T into smaller blocks of size
M; x M; fori =1,..., L, resulting in L sets given by T; for
i = 1,...,L, respectively. Then, using an unconstrained
Lagrangian formulation [9], we can write the overall cost
function J(C,S) = D(C, S} + AR(S) as:

L
7= 5 Y [sxy ldeoy) + )]

i=1 YEC; XeT;
+AR:(S), (1)

where R:(S) corresponds to the cost of transmitting the
quadtree structure, itself, for all vectors in the training data.
As such, we must perform the minimization over all possible
structurally constrained quadtree codebooks, all variable
length codes, and the set of valid selector functions given
by § = {Sx,y}. In our case, the selector functions are
specified by
1 if xis coded with y
Sxy ={ 0 otherwise. (2)
Using this paradigm, the algorithm for determining the
best quadtree structure developed in [6] can be likened to
the encoder optimality condition for VQ [10] in which the
structurally constrained form of the quadtree codebook per-
mits optimal encoding without an exhaustive search over all
vectors in C. As part of this paper, we reformulate this en-
coder optimality condition in the product code framework
and derive an analogous condition for the decoder that leads

to optimal leaf codebooks and variable length codes for a
given quadtree structure. The subsequent iteration of these
two conditions is the foundation of a joint design algorithm
that leads to a monotonically descending Lagrangian cost
function in a manner resembling the generalized Lloyd al-
gorithm [11].

2.1. Encoder Optimality

From the encoder optimality condition in [9, 10], it follows
that for a fixed codebook C, the optimal quadtree represen-
tation is determined by the following Lagrangian-modified,
nearest neighbor mapping:

Q(x) = argmin [dx,¥) + - 1(y)]. (3)

Here, the code vectors y are taken from the effective code-
book C, and as such, the rate term I(y) now includes the
binary representation of the quadtree in addition to the
specification of all appropriate leaf code vectors. Without
regard to the constraints imposed by the quadtree struc-
ture, the necessary condition in Eq. (3) implies an exhaus-
tive search over all code vectors in C. It is not difficult
to see that even for moderately sized leaf codebooks and
a small quadtree, the dimension of the effective codebook
can grow quite large. For example, a 4 level quadtree with
leaf codebooks of size N; = 4 for all : corresponds to an
effective codebook with more than 4 x 10°® code vectors.
Fortunately, because of the nonoverlapping nature of the
quadtree segmentation, an alternate strategy exists for ob-
taining the optimal code vector in C with very manageable
complexity [6].

First, consider the following iterative construction of the
effective codebook C in which we observe that CZ = C can
be viewed as the union of two smaller codebooks C; and CIP.
The codebook Ci, as defined earlier, consists of unstruc-
tured M; x M; vectors and is used to quantize the block if
it is a leaf node. If not, the block is quantized using a prod-
uct codebook C{ which is simply the Cartesian product of
four reduced dimensionality codebooks with code vectors of
size Mi/2x M;/2, or equivalently, M,;1 x Miy1. Proceeding
in a recursive fashion, we can further subdivide each of the
reduced dimensionality codebooks so that at level : we have
an effective codebook given by CF = C; U CF and a prod-
uct codebook given by CF = ,ﬁl X Cf,_l X Cf,,l x Cf._l
for 1 = 1,...,L — 1. At level L, the effective codebook
can no longer be decomposed, and consequently, we have
CE = Cp. Our goal is to use this stracture to reduce the
encoding complexity.

Observe that any particular vector x € T; can be de-
composed into four vectors x; € Ti4; for j=1,...,4. In
order to quantize x using C, we note that by construction,
the optimal code vector y;(x) can be determined by simply
comparing the best code vector y;(x) in the leaf codebook
C, with the best code vector yp(x) in the product code-
book CF. Moreover, because of its nonoverlapping nature,
the best code vector in CF is just the Cartesian product
of the four best code vectors in C%; for x; ranging from
j=1,...,4. Hence, we choose y;(x) iff
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d(x,y(x)) +A- [Iyi(x) +1] <

S [aeyae) +2- [ae) +1]], @)

=1

(e

which corresponds to updating the selector functions ac-
cording to Sx,y;(X) = 1, and Sx,y = 0 for all leaf code

vectors y € CF. Otherwise, we choose y}(x) and set
Sx,y;(x) = 0. Note that the additional bit in the rate term

of Eq. (4) corresponds to the cost of transmitting the tree
structure—assuming the quadtree is coded as in Figure 2.
Using this methodology, the optimal mapping described by
Eq. (3) can be achieved through a recursive bottom-up pro-
cedure in which the training data is coded using each C¥
fort=L,L-1,...,1, according to Eq. (4). As a result, the
total encoding complexity is reduced from a single infeasi-
ble search over the entire effective codebook, to a number
of independent searches over much smaller leaf codebooks.

2.2. Decoder Optimality

We now develop a necessary optimality condition that can
be used to find the best codebook C for a fixed quadtree
segmentation. Consider the overall cost function given by
Eq. (1). Since the codebock C is constructed from the set
of leaf codebooks {C:}, we take the partial derivative of
J with respect to an arbitrary leaf code vector y € C; to
arrive at

ﬂ=22-(x—y)-5x,y (5)

XeT;

when the distortion measure d(x,y) is the squared error
given by ||x — y||>. By setting this to zero, we infer the
following necessary condition for the optimal leaf code vec-
tors:

. _ zxe’-". X- Sx‘y
ZXET,- Sxy

Thus, each reproduction codeword is simply the centroid
of all training vectors of appropriate dimension that are
quantized by it.

Finally, for a fixed codebook and quadtree, we seek
variable length codewords that minimize the total rate in
Eq. (1). Under the assumption that the first-order entropy
for each leaf codebook can be attained, we assign the code-
word lengths according to I*(y) = —log, (pi(y)) for all
y € C; from 1 = 1,...,L, where p;(y) is the probability
mass function (pmf) given by

y , VY €Cii=1,...,L. (6)

I\’ . 41—1

—_— 7
err. Sx.y @

pi(y) =

3. CODEBOOK DESIGN

Having established necessary requirements for a quadtree
encoder and decoder in Section 2, we can update an ar-
bitrary quadtree structure through successive iteration of
the two conditions. From the necessary conditions, it fol-
lows that each step of this approach can only improve or
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Step (1): Initialize:
o L leaf codebooks, Ci, 1 =1,...,L,
o Lpmf’s, p;,1=1,...,L,
o Lagrange multiplier A,
¢ Training data, T = {xi1,...,xx},
¢ A stopping threshold ¢,
e and t =1 and J©® = 0.

Step (2): Determine optimal quadtree structure
using Eq. (4) for¢e=L,L~1,...,1.

Step (3): Update {C;} according to Eq. (6).

Step (4): Update {pi} according to Eq. (7).

Step (5): Compute J*) using Eq. (1)

Step (6): If = — J(*) < ¢, then go to Step (8).

Step (7): Set t =t + 1. Go to Step (2).
Step (8): End.

Figure 1: Quadtree design algorithm.

leave unchanged the rate-distortion performance of the en-
coder or decoder, resulting in monotonic descent of the La-
grangian cost function, and, consequently, a locally opti-
mal quadtree solution. For different values of A, each solu-
tion corresponds to a distinct, but optimal, rate-distortion
tradeoff. The resulting algorithm, which can be viewed as
“quadtree-constrained” version of the entropy-constrained
VQ design algorithm in [9], is described in Figure 1.

4. RESULTS

In terms of the leaf quantizers, structural constraints can
be imposed to further reduce the memory requirements and
encoding complexity of the overall quadtree structure. For
example, we can employ variable rate product codes such
as transform coding, or, as in our experiments, mean-gain-
shape VQ [12], and still jointly optimize the entire structure
with little modification to the proposed algorithm.
Computer simulations comparing the quadtree coding
performance of three distinct codebook design approaches
are now examined. All results are for the 512 x 512 “lena”
image using a six level quadtree structure with M = 1.
Maximum codebook sizes of the shape features for levels 1
through 6 are 1, 512, 512, 256, 128, and 32, respectively.
First, we consider the approach of Sullivan and Baker in
which the leaf codebooks are optimized for fixed-rate VQ
independently of the quadtree segmentation. The perfor-
mance using these codebooks corresponds to the bottom
curve in Figure 3. Since quadtree coding is inherently vari-
able rate, we next drop the fixed-rate constraint on the leaf
quantizers, and design the leaf codebooks using entropy-
constrained VQ [9]. These results correspond to the mid-
dle curve in Figure 3. We note that while the leaf code-
books and the quadtree are designed for the same value of
), the codebook optimization is performed independently.
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Figure 2: Example three-level quadtree data structure: (a)
quadtree-based segmentation of an image block, (b) corre-
sponding tree structure, and (c) binary code to represent
tree (0=leaf node, 1= non-leaf node).

Although this approach affords us some gain in the rate-
distortion sense, better results are still possible if we imple-
ment the joint design methodology described in Section 3.
The curve representing this design approach is the top one
in Figure 3.
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