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ABSTRACT

A wavelet based representation of planar objects is in-
troduced. Based on this representation, a matching algo-
rithm using indexing techniques is also developed for identi-
fying unknown objects. Rather than considering all points
on the representation, only extrema are used in constructing
the look-up table and for matching. Simulations demon-
strate that the proposed algorithm is effective and accurate
in classifying objects under similarity transformations and
in a noisy environment.

1. INTRODUCTION

Singularities and irregular structures often carry the most
important information in object contours and it has been
suggested, from the view point of the human visual system,
that some points along these contours are rich in informa-
tion content and are sufficient to characterise the shapes
of the objects. Examples of such critical boundary points
(feature points) are minima, maxima, zero-crossings of cur-
vature, and discontinuities (or singularities) of curvature or
tangent angle, etc.

By decomposing signals into elementary building blocks
that are well localised in both space and frequency domains,
the wavelet transform can detect and characterise the lo-
cal regularity of signals [1]. In this paper, we introduce
a method for recognising planar objects based on the sin-
gularity points on their contours. The proposed algorithm
consists of two steps : (i) constructing the object represen-
tation in the form of discontinuities of the tangent angle
(discussed in section 2) and (ii) classifying unknown ob-
jects into different classes represented by given models in
a database (given in section 3). The discontinuities are
detected using the dyadic wavelet transform, and the clas-
sification method is based on the indexing technique which
has been shown to be an efficient technique to deal with
large size databases [2]. Some experimental results will be
given in section 4 followed by the conclusions in section 5.

2. WAVELET BASED REPRESENTATION

Our proposed object identification system uses shape in an
image as an important factor to recognise and associate 2D
unknown objects. The system is designed to handle planar
closed boundary objects of general shape with or without
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noise. Translation, uniform scale and rotation are permis-
sible. Qur starting point for digital shape analysis will be
the segmented image, in which the individual connected
components have been identified and labelled. This can be
accomplished by means of an edge detector followed by a
tracing algorithm [3].

The proposed representation is constructed based on
the tangent angle function which is defined as follows :

_ y(t)
8(t) = arctan (x(t)) telo,T)
where T is the perimeter of the object, the dot denotes dif-
ferentiation with respect the arc length parameter, ¢, and
(z,y) are the horizontal and vertical coordinates of the con-
tour points, respectively. In the discrete case, the deriva-
tives are approximated by the finite differences and the dis-
crete tangent function can be implemented as :

y(n+1)— y("))

z(n+1) —z(n) (1)

8(n) = arctan (
withn=0,...,N =1, and N is the number of equi-spaced
segments along the object contour.

This expression of the tangent angle bounds the gradi-
ent into the region [—n,x]. Hence, values which fall out-
side this range will be wrapped around and abrupt changes
are observed at locations where the difference of the gra-
dient magnitude between two successive points exceeds =
radians. These abrupt changes will form artificial discon-
tinuities which will be mis-interpreted as critical boundary
points when the representation is used for object recogni-
tion. The wrap around error can be eliminated with the
addition of a compensation factor, F(-), as follows :

8c(n) = 8(n) + 2xF(8(n) — 8(n — 1)) 2)

with

1 for z< -7

F(z):{ -1 for z>w

0 otherwise
In relation to shape representation and analysis, 8. has one
serious drawback : it is not a periodic function. For simple
closed curves 8. has the property [0:(0) — 6.(N)| = 2x. In
order to overcome this problem, the compensated tangent
angle function, 8., needs to be periodised as follows :

05(n) = 6c(n) + sEn(6.(0) ~ 6(N) - S4m  (3)
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with

1 for z>0

sgn(z) = { -1 for 2<0

0 for z=0
This tangent angle function #; is, in general, dependent on
the size of object contours. In order to make the represen-
tation size (or scale) invariant, a normalisation process on
object contour arc lengths is necessary to be carried out
before finding the discontinuities on the function. Since the
proposed algorithm makes use of the dyadic wavelet trans-
form in constructing the object representation, it is neces-
sary that the arc length be normalised to a power of two
integer in order to extract all the information contained in
the tangent function without retaining the approximated
tangent at the coarsest resolution level. For matching pur-
poses, the number of data points on object and model con-
tours must be the same. The normalised contour thus is
re-sampled such that the number of data points equals the
normalisation constant. There is a tradeoff between the
normalisation constant value, the classification result and
the computational time [4].

The next step of constructing the object representation
is locating feature points on the object contour which cor-
respond to discontinuities on the periodised tangent angle
function 8,. Adapting the technique in [1}, and using a
wavelet which is the first derivative of a smoothing function,
the irregular structure of the tangent function is detected.
Let ¢ be a smoothing function, then the wavelet function
is defined as follows :

vt = 228 (4)

The dyadic wavelet transforms of a signal f with respect to
this wavelet is defined as :

Wil = frts®) =22 (Fr0)® 0

where ¢;(t) = 57 (t/27).

With the wavelet as the first derivative of a smoothing
function, we will show that the wavelet transform of the
periodised tangent angle function, 8, will be proportional
to the curvature of the object contour. For simplicity and
to be able to extend Mallat and Hwang’s results, we will
consider the problem in the continuous domain.

In the continuous domain, the periodised tangent angle
function (3) can be rewritten as :

0p(8) = 0c() + ¢ ©)

here we assume that the tangent angle at the starting point
on the contour is larger than that at the end point. Taking
the dyadic wavelet transform of function (6) using a wavelet
which is the first derivative of a smoothing function, we
obtain

Wibp(t) = 8px9;(t)

= Y (6r0) ()

d o 2n d
— ol . 7, .
= 2 dt (8c * ;) (£) +2 T dt (t* ;) (1)

) At
= Yrrp)+2 -7 [ e ()

-0

where
db.(t)
b ®)
is the definition of the curvature of a 2D curve.
If 4 is normalised such that;

/_ : o(var= [ : oy(B)dt = 1

then the dyadic wavelet transform of the periodised tangent
angle function with respect to ¢ is proportional to the cur-
vature of the contour smoothed by the smoothing function
¢ with an offset factor which depends on values of j and T
Curvature descriptions of planar curves are intrinsic, that
is, rotation and translation invariant, and with an appropri-
ate normalisation, they are even scale invariant. Curvature
also uniquely represents planar curves such that a contour
can be reconstructed from its curvature description.

Kk(t) =

3. MATCHING ALGORITHM

Having represented an object contour by a wavelet based
representation, we now wish to match an unknown object
contour with model contours. Rather than considering ev-
ery point on the representation, only extrema will be used
in our matching algorithm. The use of extrema in match-
ing reduces the computational effort and also makes the
classification process less sensitive to variations on the rep-
resentation due to the effect of uncontrolled sources.

In order to classify unknown objects into given classes
represented by models in the database, one can repeatedly
match the unknown object representations with model ones
with the help of a similarity (or dissimilarity) function such
as the one in [4]. This technique is referred to as search-
based matching since the representation of the unknown ob-
jects must be matched with all available model representa-
tions. This means that it requires all feature combinations
to be explored. As a result, the matching is computation-
ally equivalent to an exponential search. In applications
with large databases, this computational burden has to be
borne every time an image is processed.

Recently, an alternate technique called indezing or hash-
ing has been proposed for matching visual shapes [2]. In
this technique, the feature correspondence and search of
model database are replaced by a table look-up mechanism.
The invariant features extracted from unknown objects are
used as indexes to look-up a table containing references
to the object models. The look-up table then returns a
list of candidate models with associated weights indicat-
ing their likelihood. The advantages of indexing over tradi-
tional search-based matching schemes are especially evident
in applications involving large collections of object models.
Indexing does not require considering each model separately
and is thus less dependent on the database size. A general
computational framework of indexing can be found in [2].

Index-based recognition systems, in general, compute
invariant features from an image which are then used to in-
dex a look-up table. In our case, there are four features used
as indexes for the look-up table. They are the resolution
levels, and the magnitude, type and location of extrema
of the representation at each level. The first three features
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are invariant to similarity transformations. The locations of
extrema, however, vary since the representation is not shift
invariant. Thus some techniques must be used to overcome
this problem.

Resolution Level : Not all resolution levels are used as
indexes for the look-up table. Only the levels which con-
tain most of the representation energy are considered. By
using the representation at these levels, the effects of noise
and quantisation errors are significantly reduced. This is
because, at these levels, the signal to noise ratio (SNR) is
high if we assume that the noise and errors have a uniform
distribution. In practice, these levels must be determined
for each model in the database. Knowing the range of these
levels for each model, common levels of these ranges, de-
noted by L, are used as one of the indexes for the look-up
table.

Ezxtrema Magnitude : The second index, denoted by
M, is the extrema magnitude. The magnitude has a real
and unbounded value. Since each index of the table must
be a finite number of discrete values, the magnitude will
be normalised and quantised. The normalisation process is
performed to make the largest absolute value of the mag-
nitude of the extrema in the commeon levels become 1. As
a result, the extrema magnitudes have values in the range
of [~1,1]. This range will be digitised to generate discrete
indexes. Different quantisation methods can be applied to
the normalised magnitude. The simplest scheme is uniform
quantisation. If the range of the magnitude index is chosen
as M, then using uniform quantisation, the i** index will
be indicated by the normalised magnitude in the interval of
(=14 Am(i — 0.5) &+ Am/2) with Am = 2/M.

Extrema Position : The extrema positions are used
as the third index which is denoted by D. The maximum
value of the position is defined based on the normalisation
constant, S, used in constructing the representation. Since
the proposed representation is shift variant, the extrema
positions vary depending on the starting point on the ob-
ject contour. However, the relative distance between them
is considerately stable. Thus, in order to use the extrema
positions as an index, a reference position must be defined
such that the positions of extrema with respect to it will
be fixed regardless of different starting points. By relat-
ing the wavelet and subband theories, it can be shown that
the number of equivalent frequency components in detail
signals, which are the representation in our case, will be
halved when one moves from one resolution level to the
next lower level. As a result, the corresponding number of
extrema on the detail signals (or the representation) will be
reduced. At the coarsest resolution level, the detail signal
contains only the first harmonic which has two extrema,
one maximum and one minimum, in the spatial domain.
This means that at this level, the maximum point is unique
and its position could be used as a reference. At the coars-
est resolution level, however, most of object representations
contain a small amount of energy. Thus they are easily
disturbed by uncontrolled sources and the position of the
extrema at this level will be unstable. In order to obtain
a stable reference point, one must find it at the common
resolution levels where SNR is high. At these levels, how-
ever, there is more than one extreme point. Consequently,
it is hard to choose a unique reference point. For reduc-

ing the number of extrema and the difficulty in selecting
the reference point, the coarsest resolution level among the
common ones will be considered. When building the model
representation, only one of the extrema {usually the one
with the largest magnitude) will be used as the reference
point. During the recognition phase, each extreme point
will be used in turn as the reference point. Although the
extrema positions have integer values, and as a result the
relative distances also have integer values, a quantisation
process must be applied to limit them to a finite number
of discrete values. If a uniform quantisation scheme is used
with the range of quantisation levels D, then the i*" ex-
treme position index will include all relative distances in
the interval of (Ad(i — 0.5) & Ad/2) with Ad=5/D

Extrema Type : The last index is the type of extrema
and is denoted by 7. Two kinds of extrema exist. These
are the local maxima and minima whose types have values
of 1 and —1, respectively. The extrema type can be used
directly without any modification.

4. EXPERIMENTAL RESULTS

To demonstrate the reliability and robustness of the pro-
posed representation and matching technique, the proposed
algorithm was tested on different silhouettes of aircraft shown
in figure 1(a) with different sizes, orientations and locations
as well as corrupted by uniformly distributed white noise
(see figure 2). In figure 1(b), the proposed representa-
tion of one of the aircrafts in the database (aircraft (a})
is given. The normalisation constant used in this case is
512. Consequently, there is a total of 9 resolution levels in
this representation (the last five low resolution levels are
displayed in the figure).

During the experiment, the representation at the four
resolution levels 4, 5, 6 and 7 is used. The numbers of mag-
nitude index M and position index D are chosen as 10 and
30, respectively. Table 1 shows some of our experimental
results. It consists of two parts. The first one gives the
overall test results using the proposed (indexing) technique
after 100 tests. The second one gives the results when the
same representations are used with a search-based match-
ing algorithm [4]. The experimental results show that the
algorithm is very sensitive to shape differences while being
invariant to translation, rotation and scaling. The aver-
age computational time for 100 tests of the proposed al-
gorithm is 560 seconds. This consists of the time required
for constructing the representation, the look—up table, and
matching. This was more than 3 times faster than the al-
gorithm using the search-based matching technique. The
results show that the proposed algorithm is not only faster
but also more accurate when compared with the matching
algorithm in [4]. In 100 tests, the proposed algorithm was
successful in classifying objects in a noisy environment with
100% correct classification at low and moderate amounts of
noise (from 50 to 30dB SNR) and only 2% mis-classification
occuring between two similar aircrafts (aircrafts (a) and (c))
with 20dB SNR.
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Figure 1: Test objects and the proposed representation.
(a) : Aircraft models and (b) : The representation of air-
craft model (a).

VAL

Figure 2: Some typical distorted versions of arcraft (a).
(a) : the original contour, (b) : resulting contour at 20dB
SNR, reduced with a scale of 0.5 and rotated 3007, (c) :
resulting contour at 25dB SNR, reduced with a scale of 0.8
and rotated 100° and (d) : resulting contour at 30dB SNR,
enlarged with a scale of 1.2 and rotated 45°.

Table 1: Overall Experimental Results at 20dB SNR after
100 tests.

Proposed Technique
20dB || M(a) | M(b) | M(c) | M(d) | M(e) | M(f)

O(a) || 98 0 2 0 0 0
O(b) 0 100 0 0 0 0
O(c) 0 0 100 0 0 0
O(d) 0 0 0 100 0 0
O(e) 0 0 0 0 100 | O
o(f) 0 0 0 0 0 100

20dB || M(a) | M(b) | M(c) | M(d) | M(e) | M(f)

O(a) || 100 0 0 0 0 0
O(b) 0 96 0 3 1 0
O(c) 2 0 98 0 0 0
0(d) 0 5 0 59 19 | 17
O(e) 3 0 26 0 71 0
O(f) 0 0 0 0 0 100

5. CONCLUSION

In this paper, we presented a technique for constructing a
wavelet based representation for planar objects. This rep-
resentation is translation, rotation and scaling invariant.
Based on this representation, a matching algorithm was
also developed. Our matching algorithm is based on index-
ing techniques which use a table look-up mechanism in the
classification process. Rather than using every point on the
representation, only extrema are considered in construct-
ing the look-up table and matching. From these extrema,
three invariant features - magnitude, type and location -
are extracted and incorporated with the resolution levels
to address the locations of a look-up table. Experimental
results show that the proposed algorithm is computation-
ally efficient and that it has successfully classified different
objects under the similarity transformation and in a noisy
environment.

6. REFERENCES

{1] S. G. Mallat and W. L. Hwang, “Singularity detection
and processing with wavelets,” tech. rep., Courant In-
stitute of Mathematical Sciences, New York University,
New York, NY 10012, Mar. 1991.

[2] A. Califano and R. Mohan, “Multidimensional index-
ing for recognising visual shapes,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 16, pp. 373-392,
Apr. 1994.

[3] T. D. Haig, Y. Attikiouzel, and M. D. Alder, “Border
following : new definition gives improved borders,” IEE
Proceeding I, vol. 139, pp. 206-211, Apr. 1992.

[4] Q. M. Tieng and W. W. Boles, “Complex Daubechies
wavelet based affine invariant representation for object
recognition,” Proc. First IEEE Inter. Conf. Image Pro-
cessing, Austin, Tezas, USA, vol. 1, pp. 198-202, 13-16
Nov. 1994

2478



