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ABSTRACT

This paper presents an Automatic Target Recognition (ATR) system
for laser radar (LADAR) imagery, designed to classify objects at
multiple levels of discrimination (target detection, classification, and
recognition) from single LADAR images. Segmentation is performed
in both the range and non-range LADAR channels and results com-
bined to increase object detection rate or decrease false positive de-
tection rate. Through use of the range data, object subimages are pro-
jected and rotated to canonical orientations, providing invariance to
translation, scale and rotations in 3-D. Global features are extracted
for rapid target detection and local receptive field features are com-
puted for target recognition. 100% detection and recognition rates
are shown for a small set of real LADAR data.

1. INTRODUCTION

The fundamental question addressed in this research is how to adapt
the traditional computer vision approach of segmentation-feature-
extraction-classification to imagery produced with a LADAR sensor.

The problem at hand is to automatically classify objects in a battle-
field that are imaged from above. The objects must be classified at
multiple levels of discrimination: such as, “man-made vs. natural
object”; if man-made, then “building vs. mobile target”; if mobile,
then “tank vs. other vehicle”; if tank, then “T72, M60, ZSU, or BMP”.

LADAR is a promising sensor technology for this application
since it provides high resolution 3-D information about the scene, as
well as traditional 2-D images. Depending on the sensor design, a
LADAR sensor can collect three channels of data: range, active (in-
frared reflectance), and passive (infrared emittance) data. Range data
is a measure of physical distance, unlike the other two channels which
measure energy; therefore it is not affected by illumination from other
energy sources, internal heat of the target, or weather.

The novelty of our approach is in the combined use of range and
non-range data to generate segmented image objects which are in-
variant to rotation and translation in 3-D. Features computed from
these objects are then used as inputs to a hierarchical classifier based
on the Fuzzy-ARTMAP neural network [1]. Figure 1 shows a block
diagram of the segmentation, projection, feature extraction, and hier-
archical classification components that have been implemented in the
Khoros image processing/graphical software development environ-
ment. Not shown in this figure are various knowledge bases for exog-
enous information and decision fusion. To summarize the key points
of our work:
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+  Segmentation of objects from their background using in-
formation from both the range and non-range (active or passive) chan-
nels, allowing both a logical “OR” of the information sources to de-
crease the chance of missing a target in segmentation, and a logical
“AND" 10 decrease the number of false positive detections.

»  Production of an orthogonal set of 2-D “virtual views” (in-
variant to rotation and translation in 3-D) from a single LADAR view
using the known imaging geometry to construct an inertial coordi-
nate system and computing images as seen from a virtual observer
which can be moved within that coordinate system

e Hierarchical classification of object signatures to first de-
termine whether the object is a potential target or not (target detec-
tion), then determine the general class of each target object, such as
building, bridge, or land vehicle (target classification), and finally to

recognize the target object within each class.
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Figure 1: System level block diagram showing main data
streams from the LADAR sensor to a list of labelled objects.
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2. VIRTUAL VIEWS

The requirements for constructing a spherical coordinate system con-
taining both the scene and the sensor (inertial system) from a single
image are to know the range p to each pixel in the field-of-view, the
depression viewing angle 6 for each row, and the azimuth viewing
angle v for each column. The first requirement is met by definition if
the image is produced with LADAR or some other range sensor. The
other two requirements are generally fulfilled by recording the in-
stantaneous orientation of the sensor with respect to the horizon (for
0) and with respect to the heading of the sensor or of the carrier on
which the sensor is mounted (for y).

Once a spherical (p,0,y) coordinate system has been produced,
it is simple to transform to the Cartesian coordinates of (x,y,z). It is
particularly convenient to work in Cartesian coordinates for produc-
ing a top view (looking down parallel to the z axis), since orthographic
projections can be computed for that view without using trigonomet-
ric functions.
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Figure 2: Details of the Segmentation and 3-D Rotational Invariance block from figure 1. Solid lines indicate continuous valued data,
dashed lines indicate binary data. This architecture holds for any projection; section 3 discusses the case of projection to top view.

Since a LADAR sensor is an active sensor, it can be considered
both illuminant and observer. Therefore, the coordinates of the
illuminant, the observer, and every illuminated point in the scene are
known. This is sufficient information to produce a “virtual” view by
moving the observer to a new location in the coordinate system and
recomputing the view as seen from that point.

Unlike the observer, the illuminant cannot be moved after the
data has been collected, so any occluded or unlit areas in the original
view will remain invisible in all virtual views, producing “data shad-
ows”. Finally, the virtual view will typically contain new occlusions
which obscure data points that were visible in the original view. This
is the data loss associated with the given projection.

3. SEGMENTATION AND PROJECTION TO TOP VIEW

Figure 2 shows how the range, passive emittance and active reflec-
tance streams are processed separately. Depending upon the design
of the sensor, one or more of these channels will be available, and it
must be possible to tailor the algorithm to make full use of the sensor.
The segmentation of the image is performed in each stream, as that
may be the only stream available. However, in those cases where
more than one channel is available, the channels can be combined in
order to improve performance beyond that of a single channel.

In terms of segmentation, the range channel is treated differently
from the reflectance and emittance channels. The range channel pro-
vides location data that is fundamentally different from the data pro-
vided by the other two channels, which provide erergy images. The
location data becomes the basis of segmentation by height and the en-
ergy images are segmented with more traditional techniques. In short,
the range channel extracts and projects z coordinate values, then per-
forms segmentation; the other channels perform segmentation and then
the projection before combining with the range segmentation.

The range channel uses segmentation by height. By using gray
scale to code height. it is possible to locate the z coordinate of the
ground plane by peak detection in an appropriately preprocessed his-

togram. The ground plane is then removed by thresholding at a fixed
height above it. In this interpretation, anything that projects signifi-
cantly out of the ground is an object. This segmentation method pro-
duces very accurate object outlines, but it can produce a large num-
ber of false positive objects since it does not discriminate between
man-made and natural objects.

The other two channels use a multi-scale dispersion segmenta-
tion method that was developed after empirical analysis of LADAR
infrared reflectance images. The regions of those images that contain
man-made objects such as military vehicles have reflectance values
that are either significantly higher or lower than average; or they have
highly varying reflectance characteristics. Computing dispersion [2]
over a small window size (3x3 pixels) emphasizes the latter, while
the dispersion measure for a large window (I11x11 pixels) empha-
sizes the former. One image is produced for each window size, and
the images are added and thresholded. Preliminary analysis indicates
that this method works for infrared emittance images as well.

There are at least two alternatives for combining segmentations
in the “Mask Fusion” block. If the aim is to find the maximum num-
ber of possible objects, then the separate segmentations are “OR”ed
together and then cleaned up with morphological operations. It is also
possible to eliminate some false-positive detections by correlating
objects in more than one channel; then the channels are cleaned up
before being “AND”ed together. If all three channels are available,
combinations of these methods can be used.

Rotational invariance is achieved by rotating each object around
its center of gravity in the image plane to one of four canonical posi-
tions. Similar approaches have been used in previous object recogni-
tion systems [3, 4] based on the implicit assumption that object orien-
tation has no discriminant quality for separating object classes. In the
original oblique view, this is not true in general. For example, upright
human beings seen from any other angle than straight above tend to
be taller than they are wide. Consequently, in any view other than top
view, vertical orientation of the object's major axis could be an indi-
cator for detecting standing or moving humans. In the top view, how-
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Figure 3, top: LADAR image showing five buildings and a few trees. Gray scale codes histogram equalized z coordinates with
“darker” representing “higher”. Bottom: Eight segmented objects shown in virtual top view after rotation to canonical orientation.
Objects 1, 2, and 6 are trees, object 3 is center building, 5 is building at far left, 7, 8, and 9 are buildings at lower right.

ever, the assumption is valid since the orientation of the object's ma-
jor axis represents the direction along the ground surface in which
the object is facing, and in general that is arbitrary.

Object recognition can be done based on just the top view, using
objects such as those shown in figure 3. However, seeing the object
“in elevation” (i.e., from side, front, or back), provides information
which is complementary to the information gained from the top view.
It also counteracts any problems of data shadows associated with the
top view. With the addition of one other perpendicular canonical view,
rotational invariance can be extended from the 2-D domain to 3-D by
training the classifier only on the canonical top and side views of
each object and ignoring all other 3-D orientations.

Figure 2 applies to a projection to any virtual view using the
location data. Our present implementation uses the top view exclu-
sively. The location data is used in many places to perform this top-
projection, but the system as shown will stifl work if there is no loca-
tion data available. In that case, the projection becomes an identity
operation and all images remain in the original oblique view (see
section 5 for an example).

4. FEATURE EXTRACTION

The next step after segmentation is to transform subimages, each con-
taining one segmented image object, into a form which can be used
as input by the neural classifier. This must be a 2-D to 1-D transform
since classifiers work with vectors but not with matrixes. The trans-
form should also compress the information, since even a small
subimage produces a vector with thousands of elements if every pixel
is preserved. In addition to these basic requirements, the transform
should maximize the difference between objects of different classes
while minimizing the difference between objects of the same class.
Since the range data provides a direct measure of physical size, a
number of useful features can be computed from the binary object
mask produced by the “Mask Fusion” block in figure 2. The most
obvious are area, length, width, eccentricity, and higher order mo-
ments. Using gray scale to code height, features such as mean height,
maximum height, and standard deviation of height are computed. The
passive infrared and active reflectance channels provide two more
sets of features that can be interpreted as thermal and color features
respectively. More esoteric statistics, such as fractal dimension and

entropy are also computed from the grayscale codes.

All of those features are “global” in the sense that each one is a
function of the whole object. Local receptive field features are com-
puted with a spatial kernel that is significantly smaller than the ob-
ject. We have found that local features, although computationally more
expensive, are necessary for good performance at the discrimination
level of target recognition. Gabor kernels produce highly compressed
representations of objects, capturing all at once: local average of gray
scale values, local spatial frequency, and the local orientation of con-
trast gradients (lines and edges). As shown in the next section, target
recognition based on Gabor features performs very well when used
with reflectance data and no projection.

However, Gabor features are not as effective for data that has
been projected to a virtual view, due to data shadows separating scan
lines. Classification should be invariant to the overall orientation of
scan lines, just as it is invariant to 3-D orientation of objects. How-
ever, any kernel that is sensitive to local orientation is also sensitive
to the orientation of scan lines in subimages such as shown in figure
3. Our solution is to use coarse coding [5] with unoriented kemnels
(circularly symmetric Gaussians), normalized for the number of valid
data points. This approach retains spatial relationships of locally av-
eraged gray scale values, without requiring the data shadows to be
filled in or interpolated. -

5. CLASSIFICATION

The hierarchical classifier consists of a set of Fuzzy-ARTMAP neu-
ral networks [1], each trained with a specific subset from the total set
of extracted features. It is hierarchical because that allows the recog-
nition problem to be broken down into manageable components: first
separate target objects from clutter objects with one classifier; then
divide the target objects into classes such as ground vehicles, aircraft,
buildings, and bridges, with another classifier; then subdivide each
class into recognizable targets such as tanks and other vehicles, with
one classifier per target class. Each classifier adds its prediction for a
given object to the object’s label and the confidence for that predic-
tion (based on Fuzzy-ARTMAP’s “category choice”). Interpreting
the confidence as probability, an example of one object’s final label
might be: P(target) = 0.93, P(ground vehicle | target) = 0.78, P(tank |
ground vehicle) = 0.88.
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rotated and scaled, but not projected.

The classification results reported here come from a data set of 9
active reflectance images containing a total of 44 objects, 20 ground
vehicles and 24 clutter objects. Figure 4 shows one of the images and
the isolated target objects from that image. Note that this data set is
only using one of the three channels shown in figure 2; in particular
the range data is not used, so no projections are performed. The rota-
tion to canonical orientation is therefore relative to the original view-
ing angle and therefore does not give true 3-D rotational invariance.
This data set is not adversely affected because the vehicles are all
lined up close to a side view.

Half the objects were randomly chosen for training and the other
half for testing. There were 20 targets: 13 tanks, 3 trucks, 2 Armored
Personnel Carriers (APC), 1 missile launcher, and 1 artillery unit
Non-targets included trees, patches of ground, image artifacts, etc.
This separation into targets and non-targets is precisely the task of
target detection.

Starting with a set of 164 features and iteratively retraining and
testing a Fuzzy-ARTMAP neural network classifier with different
subsets of features, we were able to reach 100% correct target detec-
tion on the test set. As few as five features suffice to yield this perfor-
mance, or as many as 38 can be used. However, adding more features
to the set of 38 degrades performance. The reasons are the small size
of the training set and that each feature is given an equal a priori
probability or importance in influencing the outcome of the classifi-
cation, so adding uncorrelated features which do not substantially
help the classification dilutes the effect of the more useful features.

The five features that constitute the minimal set yielding 100%
correct classifications are:

Eccentricity of object shape

Standard moment m,, (x coordinate of shape centroid)
Maximum gray leve

Kurtosis (4th order statistic) of gray levels

A measure of fractal dimension of gray levels

e

We also implemented a target recognition level classifier for
separating the set of objects determined to be targets by the target
detector described above into tanks and non-tanks. Non-tanks here
include APCs, trucks, missile launcher, and artillery unit. This classi-
fier also used a Fuzzy-ARTMAP neural network and thus learned the
training set perfectly.

Figure 4, top: LADAR image (gray scale coding reflectance) showing 4 tanks and 2 other vehicles. Bottom: Each target segmented,

On the test set, in this case 10 objects (six tanks and four others),
the system achieved 100% performance using a set of local Gabor
features. The use of oriented local features is appropriate here, since
the images are in the original unprojected view, circumventing the
problem with separated scan lines discussed in section 4. We used a
sampling of 9 locations (3x3 grid) in each subimage, and 12 orienta-
tions per location for a total of 108 features. Each feature has a sine
and cosine pair that was converted to a phase and magnitude pair; the
phase component was then discarded.

Previous work with the same data set using a hybrid neural net-
work / expert system [6] has shown that both target detection and
recognition are non-trivial in this data, due to compiexity of clutter,
varying contrast polarity between objects and background, and par-
tial occlusions of many objects.
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