TEXTURE REPRESENTATION
THROUGH MULTIFRACTAL ANALYSIS OF OPTICAL MASS DISTRIBUTIONS
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ABSTRACT

The paper addresses the analysis of singular distributions defined
on a fractal support, called fractal measures. In general, a fractal
measure has an infinite number of singularities of infinitely many
types. The term multifractals expresses the fact that points,
corresponding to a given type of singularity, tipically form a
fractal subset whose dimensions depend on the type of
singularity. The theory of the g-th order generalized fractal
dimensions supplies a tool for the characterization of such
multifractal measures. This theory results from an extension of
the fractal dimension to different-order statistics. The paper
exploits such concepts in order to face the problem of texture
recognition. In particular the fractal measure taken into account is
the 2D distribution of the optical mass of an image; some
theoretical aspects related to this problem are addressed. Results
on real images are presented and discussed.

1. THE BINARY MULTIPLICATIVE PROCESS
Multifractality is a property relevant to objects with subsets
whose fractal dimensions do not equal the global one. So, to
characterize the multifractality of a set, one has to find out the
spectrum of the fractal dimensions of the subsets different from
the one of the global set; in short, the multifractality spectrum.
Let suppose to have a segment S of size s(5)=1, over which a set
of P points is distributed. Let divide the segment into N=2" equal
parts; let call N; the number of points contained in the i-th
partition, and W, the percentage contained in it. If we consider P
and n increasing to infinite, the set M={p.} (i=0,...,N) contains all
the information about the distribution of the points over S. Let
now consider a binary multiplicative process that generates a
distribution of points. These P points are distributed as follows: at
first, let divide S into two equal parts and distribute over each a
different percentage of the initial population (that is, pg, M,
where L+l =1); after, let repeat recursively the above procedure
for each subpart of the segment; in other words, let re-distribute
the population, present over that sub-segment, over the two
halves. At the n-th iteration a set M characteristic of the
distribution is obtained, M=((u0)",(uo)“" Hys-(1})°}. By counting
the intervals, over which a portion of the population equal to
pk=(},10)""‘ is distributed, they result to be N(k)=n!/[k!(n-k)!], with
ke (0,...,n). As we have to calculate the limit for (n,P) increasing
to infinite, it is useful to define E=k/N and solve in function of
such a variable. Hence, we obtain N(E)=n/[(n€)!(n-nE)!] and
pk=[(p0)1'§(ul)§}". Let consider now the set of intervals (sets)
with population Pe called ng and look for its fractal dimension

. i D_ 0 (I>D(§)
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By computing such limit with §=2" (with n—+e=), and by using
the Stirling relation nlz(2r-n"1)05.e ope obtuin
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N,(8) =[2mng(1-g) % (bl 8l1-2)ios1-2)]

D(g)=£(8)=~(In2) & In& +(1~E)n(1-8)

It is possible to observe how the sets S, charactenize the
distribution of points over §, as all of them are 'sets of points with
same densities and S=Y, S;. Moreover, even if the fractal
dimension of § is equal to 'l (it is a segment), the fractal
dimensions D(S;) assume values between 0 and 1; each subset
has its own fractal dimension, and from this has origin the
concept of multifractality. Instead of the parameter &, it is better
to use the Lipschitz-Holder exponent o, which definition comes
from p§=5“‘. By considering 8=2"", one obtain

o= lnpé/lnB =(In 2)'1§lnp§ +(1—§)ln(l —pé)

It has to be observed that @ is defined in o, o], as §€[0,...,1],
where um=-ln(1-p§)/ln2 and (XM=-]np§/ln2; Slo=fl(€)] is the
fractal dimension associated to the set S,

2. THE t(q) AND D(q) FUNCTIONS
When analyzing discrete sets, the simplest way to manage them is
offered by the so-called box-counting method, which consists in
dividing the sets into boxes. However, in such a way, one loses
many information contained in the set, as the distribution of
points; so, it is necessary to consider not only the boxes covering
the set, but also the masses that they contain. Hence, to each box
it is associated a quantity p=N/N where N is the total number of
points in the set, and , is the number of points contained into the
i-th box. Hence, one has the set M=[ui}, where i=0,...,B; B is the
number of boxes that are needed to cover the set. D, is the box-

dimension of §, D, = lim In B/In3. In order to weight differently

50
the subset of S, depending on the masses contained in the boxes,
one has to measure S and to compute

My(q.8) = Tico_ n(syufd? = N(q,8)5? where

the box-dimension

0 d
lim Md(q,S) = €= ‘c(q).
50 +eo d <1(q)

computation, ©{¢)=— lim {ln[N(q, 8)]/1n 5}
50

In this way, depending on the values of g, the different subsets
have different weights; this fact can also be evidenced by the
behavior of t(g) at the boundaries of the existence range. If the
maximum and minimum values assumed by the densities are
indicated by p and H,,, and N, and N,, the number of boxes in
the same cases, the infinite limit
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lim t(q)=~—-1lim lim (ln Sico..n Hf /ln 8) =1lim lim ¢(InN,/In3)
g—r—o 50 g—b—eo " 80 go—

behaves as a straight line. By considering the derivative of 1(g)

d(g)/dg =~ lim(z,-u,q lnui/lns—zipiq)

50

lim (dt(g)/dg) =~ lim (Injt,,/In8) = —0upy

g——co 80

lim (dv(g)/dg)= - lim(Inys/In8)=~ax,
g—+oo 850
Moreover, 1(0) is the fractal dimension of the set under
examination, and 1(1)=0 as the {;} are normalized to the unit. In
the case of the quaternary multiplicative process used before, it is
possible to find out the analitical form of t(q) when 8=27

N(d.3)= T[nyki(n-k)]pt(1-p)*" = [p“ +(1 —p)q]"
k=0

from which t(q):ln[pq+(l— p)q]/an. The function T(g) is

linked to f{et); from its definition, to & correspond the boxes K,
so that p =0"" and that the set of these boxes has, for 60, a
fractal dimension equal to fla). By calling M(c,8) the number of
boxes needed to cover the set S, with o€ (o, 0+do), this number
result to be, if & is sufficiently small, N(a,8)=p(a)d-floda,
where p(o) is the number of sets from S, o §_,,,. From its
definition, M {g,8) results to be equal to the summation of (u;)9,
and consequently, in the continuous case,

Miy(g,8) = [p(e)5~ a0 =] p(a) /0y

In the limit for 80, the integral behaves as the maximum on a
of the argument; of this one, the factor p(e) remains bounded, as
not depending from &, and then the dominant term is o(g): so
that, when o=0(g), d[go-f{a)}/do=0 and, for this value,

M,(q,8)= ks L/@roa-d]

Hence, there is a relation between T(¢) and f{a), which can be
expressed in a parametric form as tg)=flalg)]-qa(g).- By
deriving, we obtain that, when a=0(q),

ANCT S ¢
dg do dg dg dg| da

If one wants a function constant over an E-dimensional space, and

equal to E, one has to use the function D(g), defined as

D(g)=1(¢q)/(1-g). With this kind of definition, in order to obtain a

function continuous and defined over ge R, it is necessary to

manage differently the point ¢g=1

lim D(‘I) =—lim hm-l—ln_.}:'_“l_ =—1lim Z,u, ln}l,
¢l 850¢>1 1-q Ind o0 In 5

by using the Hospital theorem. Hence, it is possible to make the
function continuous by defining D(q) as follows

D(q):l(g—) if g#1; D(q):—ljmz’M if ¢g=1
l-q 50 Ind

The value g=1 is proportional to the entropy H of the distribution.
In particular, H=-D,logd. By considering an E-dimensional space
over which it is distributed a population of points in an uniform
way, and by dividing the space into N=8F cells, each one
containing a portion |J.’=5'E of points. It results N(g,8)=84"DE and
then

D(g)=~(1-¢)" im{1n84E fins} = E
80

From the definition, it comes that D(g):R—R and that, by using
the same approach as for ©(q)

lim D(g)=-1lim lim (1-¢) " In3;n?/in&= oy
g—r—oo 8§00 g—r—oo

lim D(q) =a,,. Moreover, D(0) is the fractal
g—>+oo
dimension of the set, if we assume, by definition, the value equal
to 1(0). Hence, the function D(q) is not increasing, has horizontal
asymptotes to the infinite, is always positive, and, in ¢=0, equals
the fractal dimension of the set. If we consider once again the
case of the binomial multiplicative process, it is possible to
compute this function in an analytical way, resulting

D(g) =t p*+ (1= p)*| 1 -q) 2

It is constant if and only if p=0.5; otherwise, it is like in Fig.1.

Analogously,
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Fig.1. D(q) behavior for the binomial process.

3. TEXTURE ANALYSIS AND MULTIFRACTALS
A class of measure-based techniques for fractal-dimension
estimation of real textures is based on the box-dimension concept.
Voss demonstrated [2] that N(5)°=me‘1P(ml5), where P(mld) is
the probability to find 1 points within a box of side & centered on
a generic point of the set under examination. From this

D=-1im {(ln 5)_1 ln[zm n Pl 8)]}
50

The box-dimension so computed is not dependent on the grid, as
in the box-counting method, and the resulting N(8) is a real
number. However, although very simple to use, the box-counting
method has many drawbacks that make it not so attractive for
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discrete signal processing. In particular, the results are strongly
dependent on the origin of the partitioning grid. Hence, a
different definition of D(q) is used that extends the method
introduced by Voss to estimate the fractal dimension. By
following the Voss' approach, it is possible to extend the concept
of d-measure M (8), to g-th order momenta, as

My(q,8)=3,,m?P(mi8)6¢ = N(q,8)8?
and to compute the g-th order fractal dimensions

D(g)=¢"lim {ln[z mIP(ml 5)]/1n 8} if g#0
50

D ()= lim {Z,,,[(Iog m)P(mIS)]/log 5} if ¢g=0
80

It can be demonstrated that, in the case of point distributions
where each point has a unique mass 1/N,, where ¥, is the number
of points of the whole set, the latter definition of D(g), named
D(q), is equivalent to the former, as D(g+1)=D'(q). These
concepts are based on the hypothesis that the analyzed sets are
continuous or dense; so, it is possible to reach measuring-scale
dimensions that are infinitesimal. Moreover, these sets fit the
multifractal model at all scales; it is possible to define a
multifractal measure {1]. In the case of real structures, it is
mandatory to define a different and approximated multifractal
model to estimate the function D(q). In other words, a model must
be defined for a given range of scales, and a tool for parameter
estimation must be provided. Let us consider a set § that complies
with the multifractal model D'(g) if, for a small § value (i.e.,
d<<s(S), where 5(S) is the set size), there exist (§_,8,) such that
N(q,S)Equ‘ID(‘I), where 8¢ (3, ,8,,). Now it is possible to estimate
D(q) through a linear regression in the {Ind, I1nN(q,8)}
bilogarithmic plane, applied to samples in the linear region. This
implies that, in order to estimate the fractal dimension, it is
necessary to detect the range (8,,8,,) over which the behavior is
linear in the same bilogarithmic plane as defined above.

4. MULTIFRACTAL TEXTURE MEASURES
It is possible to define different multifractal measures related to a
generic signal f(x), FRE—R. One can take into account the signal
graph, that is a multidimensional (E+1) surface, or consider the
image as a optical mass bi-dimensional distribution. In the
former, a major problem in the estimation arises from the fact that
a digital image is a discrete set of points, and this gives rise to a
drawback for negative g values; i.e., small masses predominate
over large ones, and, for small 8 values, the measures of small
masses are less accurate. This drawback produces in the bi-
logarimic plane two linear regions with two different slopes
(Fig.2). The samples for small 8§ values are totally dominated by
very few numbers (usually, P(811) is not aull for small 8) and the
fractal behavior is masked. To evaluate the linearity of the set of
measures, the parameter l=[4(uxy)2+(pxx-pyy)3]0'5/(;,1“+pyy) is
defined, where [ denotes the covariance of the points in the set.
The values of the parameter [ are included in the range [0,1], and
the maximum value is reached when, and only when, all data lie
on a straight line. The scale range (8,,8,,) should be determined
for each g value in order to optimize the linearity, or better, to
identify the range in which the multifractal model is verified; to

this aim, the parameter [ is estimated over a moving window,
with dimension (8,8,,,), along such data distribution in the
bilogarithmic plane, so producing an estimation of the local
linearity L(i)

L(i) = 1{[1n 8:,n N (3;)]....[In 84410 Nq(SM,)]}

where k is experimentally set to 3+5. The behavior of L(i) shows
a plateau bounded by one or two minima, which represent the
upper and lower bounds for the linear region, and are assigned to
3, and §,, (Fig.3).
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Fig.2. Samples in the bi-logarithmic plane.
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Fig.3. The behavior of L(i).

However, in small textured areas there are few scales of measure
only and, as for negative ¢ values the number of scales is reduced,
it is not possible to compute a reliable D(g). Therefore, for
negative g values in D(g), the resolution should be increased
through interpolation in the case of small measuring-scales 8.
This can be done by: (i) using a smoothing interpolant, which
minimizes the mean square error and gives a stable measure; (ii)
using an interpolant complying with the multifractal model,
based, for instance, on the iterated function systems. Fractal
interpolation showed the unlike property of forcing the set to be a
single fractal, as its application results in flatting the D{q)
behavior. The bilinear interpolant is also varying this behavior,
but it results only in lowering the fractal dimension D'(-1),
without chuanging the asymptotes and the derivative of D'(g) in the
flexus. So, the bilinear interpolation has been preferred. To sum
up, the estimation algorithm includes three steps: (i) the
distribution P(8) is computed for boxes of size 8=Bs!, where ic
{0,1,2,...}; s is a number between 0 and 1 (and experimentally
choosen between 0.8 and 0.9); and B is the size (in pixels) of the
largest box (in this way, a linear series in the bilogarithmic plane
is obtained); (ii) for each g value, the scale range and the
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resolution are computed; (iii) an interpolation of multiple §
values is performed to estimate the limit of §—0 and the correct
D'(q) value. Images are considered as mass distributions
generated by a subdivision process F(p.r); p=(p,,....p,) is the
vector of the probabilities of mass distributions, and r=(ri,...r,)
is a space partitioning vector. Consequently, each pixel has a
mass f(x,y) equal to its gray level. Optical images can be
considered samples of the continuous radiance function. Under
these conditions, such a measure is not a multifractal one and
leads to a trivial (uniform) D(q) function. However, images have
discontinuities in the first derivatives, thus, the D(g) function is
computed for the image of the gradient. For non-optical images
with high discontinuities (SAR), the multifractal parameters can
be estimated directly on original images. It is necessary to have a
set where every point has a unique mass value in order to apply
the latter definition of D(q). Therefore, each pixel (x,y) with mass
Sflx.y) is assumed to be the overlap of n=f(x,y) points with unitary
mass. If compared with the previous one, the P(ml3,) estimation
algortithm is very fast: for optical images, the gradient is
computed; afterwards, the image m(x,y,)) is obtained by filtering
the image f(x,y) with a moving average. Finally, for each m(x,y,8))
the correspondig entry P{m(x,y,8)} of the histogram is increased
proportionally to f{x,y), i.e., the original gray value of the pixel.
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Fig.4. The recursive subdivision algorithm.

Through such definition, it is also possible to generate test images
characterized by an analitically known D(g). By using a recursive
mass subdivision schema (Fig.4), one can obtain a fractal
distribution denoted by (where Z; p=1)

D(g)=(¢-1)"n3; pf/in2

and estimation results very close to the analitical ones (Fig.5).
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Fig.5. Analitical and estimated D(q) functions.

5.RESULTS
The functions D(g) were estimated on SAR textures by using the
mass distribution algorithm. 128x128 windows were analyzed,
using 15 different measuring scales (i=0,1,...,14, ranging from 3
to 61 pels, with s=0.87). The D(q) behaviors are shown in terms
of mean value and standard deviation. Even though some overlaps

occur for certain ranges, significant differences are found for the
other ranges, so allowing an easy texture discrimination.

S

-30 20 -10 [} » 20 20 4«
Fig.6. D(g) behaviors for SAR textures.

Brodatz's texture classification was also performed; four
multifractal features were used: D(-3) and D(3); the first
derivative in g=0; the fractal dimension of the 3D surface. A k-
NN classifier was used and the relevant results were compared
with classical co-occurrence matrix analysis. Each 256x256
image was partitioned in overlapped 64x64 windows (one every
32 pixel in both x and y directions); results are reported in Fig.7.

Fig.7. Some Brodatz textures (left); classification results by the
cooccurence matrix approach (middle): error 15%; classification
results by the multifractal approach (right): error 2%.
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