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ABSTRACT

This paper focuses on the representation and arbitrary view
generation of three dimensional (3-D) scenes. In contrast to
existing methods that construct a full 3-D model or those
that exploit geometric invariants, our representation con-
sists of dense depth maps at several preselected viewpoints
from an image sequence. Furthermore, instead of using mul-
tiple calibrated stationary cameras or range data, we derive
our depth maps from image sequences captured by an un-
calibrated camera. We propose an adaptive matching algo-
rithm which assigns various confidence levels to different re-
gions. Nonuniform bicubic spline interpolation is then used
to fill in low confidence regions in the depth maps. Once the
depth maps are computed at preselected viewpoints, the in-
tensity and depth at these locations are used to reconstruct
arbitrary views of the 3-D scene. Experimental results are
presented to verify our approach.

1. INTRODUCTION

In light of recent advances in technology, virtual environ-
ments have become an important tool in engineering, de-
sign, manufacturing and many other areas. Especially im-
portant to the development of this growing field is the prob-
lem of Arbitrary View Generation (AVG) in which an in-
termediate view of a three dimensional (3-D) scene is inter-
polated from its neighboring views. Existing work in this
area can be classified into three classes: in the first class,
a full 3-D model of the scene is constructed by volumetric
intersection and then reprojected in order to generate the
desired view [1]. The main difficulty with this approach is
that of registering and combining the 2-D information to
generate a full 3-D model. In the second class, views are
generated by exploiting certain invariants in the geometry
of the problem [2]. This approach however does not cor-
rectly reconstruct points that become deoccluded.

The third class of AVG algorithms attempts to deal with
occluded/deoccluded regions in the scene better than the
second class while not resorting to a full 3-D representa-
tion of the first class. Generally, a set of 2;—-D surfaces
is first estimated and then combined to generate the de-
sired view. For example, Chen and Williams [3] measure
range and camera transformation to establish pixel corre-
spondence and then apply morphing to interpolate interme-
diate views. Similarly, Skerjanc and Liu [4] compute depth
with known camera positions in order to synthesize inter-
mediate pictures.
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Our approach to AVG falls into this third category [5].
However, unlike existing techniques, we use a sequence of
images captured by a hand held, uncalibrated camcorder.
Uncalibrated cameras with unknown position are used to
avoid the difficult and time-consuming step of calibration
and therefore increase the flexibility of the image acquisi-
tion process. Our motivation for using a sequence of video
images rather than a few still images is to improve the ro-
bustness of the depth estimation step. Wide availability of
video cameras in today’s research and commercial environ-
ment justifies their use in place of still cameras in many
applications.

Our proposed approach consists of scanning a camcorder
across several trajectories of the scene in order to generate
image sequences to be used in constructing the depth maps.
The idea is to estimate depth only at several prespecified
locations, called “reference frames,” by using their neigh-
boring captured frames. Once the depth has been com-
puted at reference frames, the neighboring intensity frames
are discarded, and only the depth and intensity at reference
frames are kept as a compact representation of the scene.
This representation is then used to reconstruct arbitrary
views located on or off the scanning trajectories.
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Figure 1: Experimental set up used to generate results.

In this paper, we consider a simple imaging geometry in
which a camcorder is translated across the object on a line
at multiple elevations, shown in Figure 1. The motivation
for not choosing rotation, or a combination of rotation and
translation motion, is the sensitivity of depth reconstruc-
tion to these classes of motion, especially when the motion
parameters are unknown. In addition, it is well known that
depth reconstruction can be more accurate when the camera
translates across an object, rather than when it translates
toward or away from it.

The outline of the paper is as follows. In Section 2, we
discuss an adaptive approach to dense depth estimation.
Section 3 describes the reconstruction algorithm. Results
are presented in Section 4. The paper concludes with a
discussion in Section 5.
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2. COMPACT REPRESENTATION

Our overall approach in deriving the depth information at
reference locations is to establish correspondence between
the reference frame and each of its neighboring frames. The-
oretically speaking, it is sufficient to establish correspon-
dence with only one of the neighbors. In practice, however,
it is advantageous to do so with a large number of neighbor-
ing frames in order to improve the accuracy of the resulting
depth map. Note that once these neighboring frames are
used in computing the depth at the reference frames, they
are discarded in the reconstruction process; therefore, their
use only affects the quality of the representation and not its
compactness.

After correspondence between the reference frame and
each of its neighbors has been achieved, the resulting depth
maps at the reference frames are normalized and combined
in order to form a depth map for the reference frame. In
the remainder of this section, each step will be discussed in
detail.

2.1. Depth Estimation

In the first step of the representation process, local dense
depth maps are generated by matching the reference frame
and each neighboring frame. Existing stereo matching tech-
niques [6] cannot be used because they assume correspon-
dence or known camera positions. Similarly, structure-from-
motion algorithms [7] estimate the structure of only a small
set of feature points in the scene.

We shall assume local perfect translation between every
pair of images to reduce the depth estimation problem to a
1-D correspondence matching problem [8]. In this case, the
epipolar lines of the two images are parallel with the scan
lines of the image. For every point (4, j), the depth may be
estimated as the inverse of disparity d(3,s) given by

i+b/2  j+b/2
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where L is the appropriate epipolar line.

There are some artifacts inherent both in the algorithm
and the problem itself that induce incorrect disparities for
certain regions. If the relative motion between two images
is translational along the z axis, then an artifact known
as aperture ambiguity occurs for horizontal lines. It arises
because the block B used for matching is too small and
does not include enough distinct features when matching. A
second artifact occurs in regions of constant intensity where
disparities are incorrectly matched because the block size is
again too small. Other artifacts occur in occluded regions
and near depth discontinuities; see [5] for more details.

It is straightforward to identify most of these artifacts
and subsequently assign confidence levels to different re-
gions in the scene. These confidence levels are important
for locating the regions to ignore when combining multi-
ple depth maps together. To detect aperture ambiguity, a
gradient-based edge detector is used to locate the horizon-
tal edges [5]. Points in the image near these edge pixels are
marked as possibly spurious. To identify constant intensity
regions, a small window is used to find regions where the
intensity variance is lower than a prespecified threshold. A
low variance suggests that the block consists of low texture
and nearly constant intemsity. Occluded regions consist of
the unmapped points from matching two images in both
directions. Performing the match in both directions also

helps to validate the matches [5]. In the end, the scene will
consist of low confidence regions marked according to the
different artifacts: constant intensity, aperture ambiguity,
occlusion, and incomsistencies in matching.

Since many real world scenes consist largely of low tex-
tured regions, the matching algorithm will produce a high
percentage of low confidence regions due to constant in-
tensity. To avoid too sparse a depth map, we attempt to
improve estimates in these regions. We propose an adap-
tive matching approach whereby a small block size is used
to match regions near boundaries and a larger block size
is used to match constant intensity regions [5]. This over-
comes the well-known tradeoff between good boundary lo-
calization with a small window and improved matching in
low textured regions with a large window. The final result
consists of fairly dense and reasonably accurate disparities.

2.2. Normalization of Initial Estimates

The depth maps from the previous stage need to be normal-
ized so that they are all related by the same scaling factor.
For this task, we propose to estimate the translation pa-
rameter between maps and scale by the reciprocal. The
relationship between disparities Au.,; and relative motion
b may be derived [5] to get the linear least squares solution

b _ S (A (Aum,s)
bl Zf=1(Au1,i)2

where b; is assumed to be one. Then b, is precisely the
scaling factor am by which we need to adjust the m-th
depth map. An iterative process is used to reduce the error
|Aam — yl|2 to some desired amount where outlier points
greater than a given error percentage are disregarded when
computing am.

(2

2.3. Combination of Multiple Depth Maps

Once all the depth maps have been normalized to a com-
mon scaling factor, they are combined to form a single depth
map for a particular reference frame. For every point, an
iterative procedure is used to analyze the statistics of the
given data, throw out outliers, and reduce the data set to a
more consistent one. Points outside the range median + ko
are discarded. The remaining points are combined in a
weighted average based on confidence levels [5]. Depth in-
formation from matching a vertically-related pair of images
is also included in combination to overcome spurious esti-
mates due to horizontal aperture ambiguity.

2.4. Cubic B-Spline Approximation

The depth map after the combination stage is fairly accu-
rate in many regions. There are however a considerable
number of low confidence regions. To fill in these regions
and to make the map much denser while not sacrificing too
much accuracy, nonuniform cubic B-splines are used. Every
depth point in low confidence regions is interpolated by its
neighboring high confidence depth vertices along the same
row or column, depending on the variance of these vertices.
The depth surface is treated as a tensor product, i.e. the
product of 1-D functions, so the data may be processed
first along one direction and then along the other which
helps to simplify computations.

Once the depth map for each reference frame has un-
dergone spline approximation, we are left with 2%-D sur-
face estimates at different locations around the scene. The
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final step in the representation process is to estimate the
relative camera motion between reference frames using an
approach like [7]. Once the relative motion between all ref-
erence frames is known, a geometric relationship may be
constructed among the different reference frames. This en-
ables us to select the reference frames needed to use in the
reconstruction stage.

In the end, the representation of the object consists of
the intensity-depth pair at each reference location along
with the relative motion among reference frames. Once
these data have been derived, they may be stored in a
database for later reconstruction.

3. RECONSTRUCTION OF VIEWS

Once we have generated the representation for a particular
3-D object, we may choose to reconstruct the view of the
object at some specified viewpoint. Assume that the cen-
ter of one reference frame coincides with the origin of the
coordinate system and that the desired viewpoint is known
with respect to this origin. The reconstruction algorithm
consists of the following: First the appropriate reference
frame(s) are chosen. Then initial estimates of the desired
view are constructed by applying motion parameters to each
reference frame. Finally, the estimates are combined into a
single image, interpolating when necessary.

3.1. Selection of Appropriate Reference Frame(s)

Given the relative position and orientation of the desired
view, it should be a straightforward task to determine which
reference frames to use. One way of deciding is to include
those frames with the smallest motion in norm relative to
the view.

Another consideration is the number of reference frames.
If the specified view is very close to one of the reference
frames, then we may choose to use only that single frame.
However, at least two reference frames are needed to prop-
erly reconstruct the desired view to reduce noise and to
recover occluded regions in the scene.

3.2. Generation of View Estimates

The notion of applying motion parameters to a frame has
been addressed in conventional computer vision literature
[8]. Let (u1, v1) be the projection of a point in the scene onto
the image plane. Suppose the frame of reference undergoes
a rigid transformation (R,T) given by R = [r; ;] and T =
(Az, Ay, Az)' where both rotation R and translation T are
in terms of the world coordinates. Then the new image
coordinates are given by

w = (r11u1 +r1i2v1 +113)2 + Az 3)
z (rs,1u1 + 13201 +733)2 + Az
v (r2aus + r22v1 +123)Z + Ay @)

(rapur +r32v1 +7133)7 + Az

where the focal length f is assumed to be 1.

The points of the reference frame arrays are considered
not as discrete independent points, but rather as vertices
of a deformable wire mesh [5] to overcome possible incon-
sistencies after transformation. Neighboring points in the
reference frame are viewed as connected to one another. A
view estimate is generated by applying equations (3) and
(4) to the collection of points and examining not only the
new coordinates of every point, but also the ordering in the

mesh. In this manner, the ordering of points may be better
preserved and inconsistencies of spurious background points
appearing among foreground points in the transformed data
are not as prevalent. Regions behind moving objects may
become uncovered after view transformation. In this case,
interpolation between consecutive points according to the
mesh may be included.

3.3. Combination of Reconstructed Data

For each point, a small region around the point is consid-
ered. Outliers in the depth domain are thrown out until
the variance in the intensity of the points in the region is
approximately uniform. The motivation is that the points
are expected to possess similar depth and intensity in the
same neighborhood. This step further rules out discrepan-
cies among the data.

During reconstruction, “holes” may be created when no
points fall within a region. This condition arises because of
uncovered regions in the scene, i.e. deoccluded regions, and
because of sparse depth information. Generally, introducing
more reference frames helps to reduce the size of these holes.
For the remaining holes, the region around each point is
grown until a sufficient number of points exists within the
region [5).

4. RESULTS

We shall now examine some results using the techniques
described above. The object of interest is a mug placed
atop a stool. A CCD camcorder is moved by hand to follow
trajectories at two different elevations to generate an image
sequence for each trajectory, similar to the set up drawn in
Figure 1. Each frame is 640 x 480 pixels large and consists of
intensity only. We attempted to make the motion roughly
translational along the z axis to demonstrate that neither
a calibrated set up nor a track is needed. Moreover, no
special lighting was used to film the scene; specularities of
the stool and the lid of the mug are very apparent in the
images.

g

Figure 2: Example of reference frame (intensity).

For the first set of results, the desired view is roughly
halfway between two reference frames along the same hor-
izontal trajectory; one reference frame is shown in Figure
2. This desired view is perhaps the one most prone to er-
rors due to the large occluded regions. Note that there is
roughly a maximum of 120 pixel disparity between the two
reference frames.
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Figure 3: Example of reference frame (depth) filled in by splines.

Figure 4: Reconstructed view along horizontal trajectory.

Figure 3 shows the corresponding depth map obtained
by using the proposed matching algorithm. The mug and
stool are estimated well and do not contain many spurious
depths. There is a gradual change in depth as expected for
a hallway scene. Artifacts are prevalent in the top left por-
tion of the stool; this is primarily due to the specularities of
the surface. Also, there are problems in recovering the han-
dle of the mug accurately mainly because intensity-based
matching schemes perform poorly for background regions
that can be seen through foreground regions.

The reconstructed view is shown in Figure 4. The image
quality is good for the most part. The horizontal edges,
e.g. top of the door, top of the mug, specularities in front of
the stool, and the drawers, have been reconstructed quite
well. The proposed algorithms take care of problems in
occluded regions: There are only a few errors to the right
of the mug and near the mug handle.

To generate a view not originally scanned by the cam-
corder, two frames from different elevations are chosen as
reference frames. The desired view is roughly the midpoint
on the vertical trajectory relating the two views.

The reconstructed view in Figure 5 is a reasonable es-
timate of the desired view. The most noticeable artifact
occurs around the upper left portion of the stool caused by
specularities that result in spurious depths. This problem
may be overcome by using a larger number of frames to
form the combined depth map; we are currently investigat-
ing this issue.

Figure 5: Reconstructed view along vertical trajectory.

5. DISCUSSION

We have proposed an approach for representing and recon-
structing stationary 3-D objects. The results in the pre-
vious section seem to indicate that this approach is very
worthwhile. Future work in this area includes consider-
ing more general imaging geometry and examining the op-
timum positions of reference frames required for a given
scene. The area of arbitrary view generation and its apph-
cation to virtual environments seems very fertile and this
research serves as a good starting point.
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