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ABSTRACT

An innovative and powerful method is proposed for measur-
ing physical parameters of lines using the responses from a
bank of Gabor filters. These measurements are made with-
out resorting to an image ruler. First the system is cali-
brated by establishing a relationship between the frequency
of the Gabor filter and line length, then the length and an-
gle of of isolated lines can be measured. A constraint on this
method is that the lines in the scene need to be separated
and isolated by a minimum distance. Results indicate that
Gabor filters can be successfully applied to the measure-
ment of geometric properties of objects, especially where
Gabor filters are already being used for processing tasks.
The best accuracies in terms of measurement error for the
line length and angle measurements were 0.81% and 0.0%
respectively.

1. INTRODUCTION

The Gabor filter was developed by D. Gabor [4] and used to
define signals in both the frequency and time domains with
minimum uncertainty. By applying methods from quan-
tum mechanics, Gabor found that functions obtained by
multiplying a complex exponential by a Gaussian having
real variance achieves the smallest space or time bandwidth
product permitted by the uncertainty principle of Fourier
analysis.

Marcelja [5] was the first to introduce the Gabor filter to
model the mammalian visual system. He realised that odd
or even symmetric receptive field profiles of simple cortical
cells approximated the elementary Gabor functions in the
spatial domain. He also observed that the visual scene was
analysed in terms of independent spatial frequency channels
and that the cortical cells are tuned to specific spatial fre-
quencies. Daugman [3] extended the original Gabor filter
to a two-dimensional (2D) representation. Daugman also
showed that the 2D Gabor filter meets the lower limit of
the uncertainty principle of Fourier analysis.

Mehrotra et al [6] developed a step edge detector based
on odd Gabor filters. The locations of the step edges were
found from the local maximum in the absolute Gabor fil-
ter response. They showed that optimum performance was
achieved with a Gabor filter oriented perpendicular to the
step edge with ¢ = 1/w, and the width of the filter needs to
be restricted to 27 /w to suppress all maxima and minima
except for the one occurring at the step edge, where ¢ is
the width of the Gaussian and w is the radial frequency of
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the sinusoid. They also observed that the local maxima are
located at the edge points and are independent of the scale
of the Gaussian.

The Gabor filter has been used in applications ranging
from texture analysis to image compression.

In this paper, we propose a new and accurate method
using the Gabor filters to directly measure such metric prop-
erties of image features as length and angle information.
Using filters to directly measure image information is inher-
ently parallel and shift invariant. A benefit of using Gabor
filters over more specific line-spread functions is that our
aim here is to measure lines of arbitrary orientation, length
and position in an image and, again, without any reference
to an image ruler.

The Fourier spectrum has previously been used to mea-
sure the dominant direction of textured patterns as given in
Bajcsy and Lieberman [1). However, these Fourier domain
paradigms are not suitable for our purposes as they often re-
sult in unreliable and inaccurate geometrical measurements
due mainly to the low resolution of the fundamental fre-
quency. These Fourier domain approaches are also unable
to provide indices for individual lines.

The Gabor filter is a narrowband filter which can be ori-
ented in any desired direction, where the width, frequency,
and orientation of the filter can be adjusted. It is defined
in the spatial domain as

g(z,y) = exp {—W(%f)z(:f +4%) + 2n(uz + vy)}

and the real part, used in this paper, is given by

9e(ov) = exp {27 +4) J cos 2mluz +09) (1)

where u = fcos#, v = fsin8, f is the frequency and 6
is the angle of the Gabor filter. The response of the real
and imaginary components of the Gabor filter are identical
except for a phase difference of 90°. In this form of Gabor
filter, the spread of the Gaussian is proportional to 1/f.
This results in only a fixed number of oscillations appearing
in the window, thus the number of oscillations within the
window is independent of the frequency. The size (band-
width}, shape (symmetric or elongated) and location of the
filter (in the spatial frequency domain) can be adjusted by
the choice of o, f, and # parameters. An example of the
Gabor filter, oriented at 45°, in the spatial domain is shown
in Figure 1.
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Figure 1: Spatial domain response of a 2D Gabor filter ori-
ented at 45°.

2. MEASUREMENT METHOD

In this section we describe the method used to measure line
lengths and angles of single, multiple, and connected lines
in an image. We first describe a method of measuring the
length of a single isolated line, then extend the method to
measuring the angle of the line.

2.1. Length-Frequency Relationship

The Gabor filter is well suited to detecting lines in images
as it will respond to changes, but not to areas of constant
amplitude so long as f g(#)di = 0. For the case of a single
line, say oriented at 0°, a Gabor filter oriented at 0° will
produce responses at the two ends of the line, and a Gabor
filter oriented at 90° will produce responses along the top

- and bottom edges of the line. It is the responses produced
by the step edges at the ends of the line that we utilise in
the measurement of the line length and angle.

A line can be represented by the interaction of two step
functions. In the 2D case, the line (having thickness) and
can be described by £L(z,y) = u(z — To1,¥ — Ty1) — u(z —
T2, Y—Ty2), where u(-) is the step function and 7 is the delay
of the step. The length is given by 7z2 — 7z1 and the width
given by 72 - 71, for the case when the angle of the line is
0° with respect to the x axis. Applying the Gabor filter to
this line image is described by r(z,y) = gr(z,y) * L(z,¥),
where L(z,y) is the line image, g-(z,y) is a Gabor filter
given by (1), and * represents the convolution operation.

This results in
T—Ta] Y—Ty1
/ / 9(a,B)dBda —
-0 ~00

i ; i ; geB)dBda  (2)

where a and 3 are dummy variables.

Depending on the length of the line and the frequency
and angle of the Gabor filter, there will be an interaction
between the two Gabor step responses, as can be seen in

r(z,y)

(b)

(©)

Figure 2: Response of the line image being filtered by the
Gabor filter. (a) No interaction between the two step responses
is taking place. (b) Gabor frequency corresponding to the
minimum response point, f4 in Figure 3. (c) Gabor frequency
corresponding to the maximum response point, f. in Figure 3.

Figure 2. Due to the frequency dependent aperture size
of the Gabor filter used, the interaction between the two
step responses will be predominantly between the maxi-
mum positive and maximum negative and the first pair of
oscillations. The other oscillations will have virtually no
effect as they will be severely attenuated. When the fre-
quency is sufficiently high (Figures 2a), there will be no
interaction between the two step responses. As the fre-
quency is reduced, destructive interaction between the two
step responses occurs and a minimum, fs (Figure 2b), re-
sults when the positive peak coincides with the first negative
peak. When the frequency is at a point where the interac-
tion between the two step responses causes the two positive
peaks to constructively interact, there will be a maximum
in the response, f. (Figure 2c).

The effect of this interaction can be seen in Figure 3
which shows the peak response as the frequency is varied.
A maximum and minimum correspond to the maximum
constructive (at f.) and destructive (at fy) interferences
respectively. This infers that the frequency corresponding
to either of these two response points can be related to the
length of the line, as these are unique points.

To find a relationship between the frequencies f. or fg
and the length of the line, I, the following equations need
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Figure 3: Maximum response in the line image convolved with
Gabor filters. (Note f; does not correspond to the fundamen-
tal frequency of the line).

to be solved:

61"'(.'3, y) =0 61‘,’(.’1,‘, y) =0
oz ! Oy

which will determine the maximum response in the filtered
image, giving ri;(Zm,ym) where £m, ym correspond to the
maximum or minimum in Figure 3. Then

Ori(Tm, Ym) -0
afi

which determines the maximum and minimum points in the
curve, and thus the relationship between the frequency and
the line length. These operations are performed when the
angle of the Gabor filter equals the angle of the line. There
is no closed form solution resulting from these equations.

This relationship needs to be obtained through a nu-
merical method. The operation is part of the calibration
process and only needs to be performed once. The proce-
dure used to find the minimum, f4 (the minimum is used as
opposed to the maximum as will be explained in Section 2.2)
was to iteratively search for the minimum in the response
obtained by finding the maximum value from each filtered
image. This is performed for a range of line lengths, and the
actual line length is plotted against 1/fy (as the required
relationship is a distance) as shown in Figure 4. A least
squares fit through the data points yields the relationship
between the frequency and the line length. As indicated in
Figure 4, the calculated minima fits the line extremely well,
indicating the direct and linear relationship between ! and
1/f, and is given by

_ 0.9866N
f

where N is the size of the image. The closeness of the least
squares line to the data points is 99.9926%, thus indicating
the high accuracy of the relationship.
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Figure 4: Relationship between the reciprocal of the frequency
which generated the local minimum shown in Figure 3, (1/f4)
and line length.

2.2. Measurement of Line Length and Angle

The line length and angle can be determined by analysing
the bank of Gabor filter responses. Figure 5 shows plots of
the maximum responses from a full bank of Gabor filters
applied to a line.

As can be seen from in Figure 5, there is a ridge, cor-
responding to f. in Figure 3, followed by a distinctive local
minimum, corresponding to fs in Figure 3. Thus the rea-
son for selecting fy as the measurement point is that it is
far easier to detect and calculate the minimum point of the
local minimum than the corresponding point, f., on the
ridge.

The absolute minimum point is calculated by first lo-
cating the minimum point of the local minimum in the ma-
trix of response values, then fitting a paraboid of the form
(z +a)® + (y + b)? + c using a least squares fit to a small
area around this point. The location (frequency and angle)
of the absolute minimum can then be estimated from the
values of @ and b. Thus the angle of the line will be imme-
diately extracted and the length of the line calculated from
the frequency/length relationship. The relationship deter-
mined between ! and 1/f is only valid when the angle is
aligned with the Gabor angle.

This method produces excellent results as the surface
around the local minimum is very smooth and reasonably
symmetrical. Table 1 gives some examples of measurements
made for various line lengths and angles. The majority of
the measurement error is due to the discretisation of the
lines in the rectangular grid, where they consist of 0°, 45°,
90° and 135° segments, thus resulting in jagged lines con-
sisting of segments of the above angles. The most accurate
results, for any length of line, are for the straight lines.
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Figure 5: Maximum response from a bank of Gabor filters
convolved with a line 10 pixels long and an angle of 0°.

2.3. Separation between Lines

When more than one line appears in the image, it is neces-
sary to maintain a minimum separation between these lines
to-prevent interactions between the responses from causing
false maxima and minima. The two cases where maximum
interference occurs is when two lines are parallel and their
centres are aligned vertically, and when the two lines are
aligned horizontally. In both of these cases, the two lines
need to be separated by a minimum distance of the spread
of the response.

The spread of the respouse is defined as the distance
that is twice the distance from the centre of the step edge
response to the second zero crossing. This distance is suf-
ficient to prevent any interference between responses from
different lines. The spread can be approximated by (see [2]
for derivations)

S = % (4)

3. CONCLUSIONS

We have proposed a measurement procedure to determine
the line parameters (length and angle) by using only Ga-
bor filters, and without the application of any Euclidean
geometry. The processing time to determine the parame-
ters is minimal as the bulk of the computational effort is
associated with applying the bank of Gabor filters to the
image.

The measurement process first needs to be calibrated
to determine the relationship between the Gabor frequency
and the line length. This would require recalibration if the
constants associated with the Gaussian, the form of the
Gabor filter, or the image size was changed.

The accuracy of the measurement is determined by the
accuracy of the calibration constant, the approximation
used in finding the minimum by fitting a paraboid to an

Discretised Measured
ang len ang len
value | %err | value | %err
0.00 { 10.00 0.00 | 0.00 9.85 | 1.50
0.00 | 20.00 0.00 | 0.00 | 19.75 | 1.25
19.18 | 2435 | 18.09 | 5.68 | 24.48 | 4.84
30.26 | 13.89 | 2745 | 9.29 | 13.00 | 6.41
29.74 | 24.19 | 28.52 | 4.10 | 24.49 | 1.24
45.00 9.90 | 45.00 | 0.00 9.82 | 0.81
45.00 | 24.04 | 45.00 | 0.00 | 23.78 | 1.08
59.53 | 19.72 | 63.78 | T7.14 | 18.90 | 4.16
60.26 | 24.19 | 61.40 | 1.89 { 2449 | 1.24
81.03 | 19.24 | 84.53 | 4.32 | 18.98 | 1.35
80.54 | 24.33 | 83.96 | 4.25 [.24.11 | 0.90

Table 1: Results of measurements for various single line
lengths and angles, minima found through a surface fitting
method (angles specified in degrees, line lengths specified in
pixels)

area around where the discrete minimum was located, and
the fact that the lines are discretised onto a rectangular
grid. The limitation of this method is that the lines need
to be isolated and separated by a small distance to prevent
interaction between the different responses. When this lim-
itation is considered, the method produces accurate mea-
surements of line lengths and angles. It is also important
to consider that the width of the line does not affect the
measurement of its length.

4. REFERENCES

[1] R. Bajcsy and L. Lieberman, “Texture Gradient as
a Depth Cue”, Computer Graphics Image Processing,
vol. 5, pp. 52-67, 1976.

{2] R. Buse, Z.Q. Liu, T. Caelli, “Using Gabor Filters to
Measure Pattern Part Features and Relations”, Pat-
tern Recognition, in submission.

{3] J.G. Daugman, “Uncertainty Relation for Resolution
in Space, Spatial Frequency, and Orientation Opti-
mized by Two-Dimensional Visual Cortical Filters”,
Journal of the Optical Society of America, vol. 2, no.
7, pp. 1160-1169, 1985.

{4] D. Gabor, “Theory of Communications”, J. Inst.
Electr. Eng., vol. 93, pp. 429-457, 1946.

[5] S. Marcelja, “Mathematical Description of the Re-
sponses of Simple Cortical Cells”, Journal of the Opti-
cal Society of America, vol. 70, no. 11, pp. 1297-1300,
1980.

[6] R. Mehrotra, K.R. Namuduri and N. Ranganathan,

“Gabor Filter-Based Edge Detection”, Pattern Recog-
nition, vol. 25, no. 12, pp. 1479-1494, 1992.

2450



