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ABSTRACT

Fractal images defined by an iterated function system
(IFS) are specified by a finite number of contractive
affine transformations. In order to plot the image
specified by the transformations on the screen of a digital
computer, it is necessary to determine a bounding area
for the image. This paper derives a formula that
expresses the dimensions of this bounding area in terms
of the transformations.

1. INTRODUCTION

Iterated function system (IFS) fractal images, as
popularised by Barnsley[1, 2], are constructed from
sheared, reduced, rotated and displaced copies of
themselves. For example, the curly image in Figure 1 is
constructed from two transformed copies of itself: the
blackened rightmost curl and the less black remainder.
The blackened rightmost curl is a reduced, rotated and
displaced copy of the whole image, produced by applying

transformation 7,. The remainder of the image is

produced by applying transformation T, which shrinks

the whole image and rotates it anti-clockwise.

Various algorithms exist for plotting fractal images
from their affine transformations[3, 4, 5]. However, in
order to plot a fractal image on the screen of a digital
computer, all of these algorithms require advance
knowledge of a bounding area inside which the image is
known to lie. In practice, this bounding area is usually
determined by trial and error, as none of the main
references{2, 6] give a formula for determining a
bounding area for a fractal from its transformations.

In this paper we derive a formula which expresses the
dimensions of a bounding circle for a fractal image in
terms of the transformations defining the fractal. In
Section 3 we derive an upper bound for the special case
of a fractal defined by two transformations by
considering how the transformations interact. In
Section 4 we derive a more general formula by
considering the effect of each transformation individually
on the centre of the bounding circle, as proposed in [7].
We find that the second derivation gives a tighter bound
provided the centre of the bounding circle is located in an
appropriate position.
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2. DEFINITIONS OF FIXPOINT AND
SCALING FACTOR

The derivations use two properties of an affine
transformation: its fixpoint and its scaling factor. An
affine transformation defined by the equation

x a b\x e Xo

' + has a fixpoint that
y) \e d\y) \f Yo
is mapped to itself under the transformation, i.e.

F oG

ations are contractive, repeated application of a
transformation to any point eventually leads to the
fixpoint of the transformation. For example, for curly,

the fixpoint of transformation 7, is the point where the

blackened rightmost curl of the blackened rightmost curl
(of the blackened rightmost curl of ...) shrinks to a single

point and the fixpoint of transformation T, is in the

]. Because the transform-

centre where repeated application of T, shrinks the
whole image to a single point. Solving the equation

efinin %o ives = bf+e(1—d)
definine ()’0) BT R T A -d) -k
ce+ f(l—a)
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Note that we can translate the origin to the fixpoint of
a transformation: the coefficients of the transformation
about the new origin become a',b',c',d',e', f', where
ad=ab=bc=cd=d,=0,f=0. 1In this
case applying the transformation to a point moves it
closer to the origin.

The scaling factor of a transformation 7 is given by

s,.=\/a+ﬁ+1/(a—,6)2+y2

a=(@+c*)/2,B=b*+d*)/2,y=ab+cdI8]

where
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Figure 1 The fractal image curly and its transformations.
The construction proceeds as follows. Figure 2

The significance of §; is that two points with separation
R are mapped by T; to points whose separation is at
most §;R. In particular, given a circle C; with radius
RC, centred on the fixpoint of T, we can construct a
circle C, with radius s,.RC‘ also centred on the fixpoint
of T, such that
point inside C,.

T, maps every point inside C| to a

3. A BOUNDING CIRCLE FOR A
FRACTAL DEFINED BY TWO
TRANSFORMATIONS

Suppose we are given a fractal defined by two transform-
ations T, and T,. Suppose T| has the fixpoint F| and
the scaling factor §; and T, has the fixpoint F, and the
scaling factor §,. We denote the distance between F)
and F, by F\F,. Weassume s5,,5, <1 and 5, 25,.
We wish to construct a circle B, with radius RB]

that is a bounding circle for the fractal image. We can
assert that B, is a bounding circle if both T and T,

map every point inside B, to another point inside B,.
We construct B, in the following way to satisfy this
constraint.

e B iscentred on F|:as T is contractive, it maps

every point inside B, to another point inside B,.
We construct a circle B, containing Bj, such that
T, maps every point inside B, to a point inside a
circle Bj contained by B,. Thus T, also maps
every point inside B, to another point inside B,.
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illustrates the result.

1. We consider a circle B, centred on F; with radius
Ry . As 5 <1, T, maps every point inside Bt
another point inside B;.

The extension of the line F,F) intersects B, at the
point P,. P, is therefore the point on B, furthest
from F),: the distance F,P, is R, + F\F,. Thus
acircle B, centred on F, with radius RB1 + FF,

contains B,.

The extension of the line F|F, intersects B; at the
point P,. P, is therefore the pointon B, closest to
F),: the distance F,P, is Ry — F\F,. Thus a
circle B; centred on F, withradius R, — F\F, is

contained by B,.

RB - F 1F 2
The ratio of the radii of B; and B, is ————
RBl + F\F,
and they are both centred on F),. By suitable choice

R, - FF,

R, +F/F,

maps every point inside B, to a point inside B;.

of RB1 we can assert =s,, when T,

As B, contains B, and B, contains B;, T, maps

every point inside B] to another point inside B,.

The circle B, centred on F| is therefore a bounding

circle for the fractal. Solving for its radius RB, gives
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Figure 2 Thecircles B, B, and B,. B, is a bounding circle for the fractal if

l+s
R, =FF, a+s)
! a- 5,)
Note that we could have centred a bounding circle on F. 2
instead of Fl, but the resulting circle would have a
larger radius, as 5, 2 5,.

To apply this method to the general case of a fractal
defined by more than two transformations, we treat the

transformations pairwise, generating n(n —1)/2 circles,

and use geometric techniques to yield a circle which
contains all of these circles[9]. However, a tighter
bounding circle can be derived using the method
described in Section 4.

4. THE GENERAL CASE

For a fractal defined by 7 transformations T,
1<i<n, n>1, we follow the approach of [7] and
consider the effect of one of the transformations 7 on

an arbitrary point X that lies on or inside a bounding
circle B; for T, centred on another arbitrary point O.
T; maps O to the point O, and X to the point X;. We
denote the radius of the bounding circle by RB,- and note
that OQ, is easily calculated from the coordinates of O.
B, is a bounding circle for T, if X, lies inside B,
if OX,<R,.

i.e. Simple geometry tells us that

2445

., — F\F,
RB +FF,

=3,

OX; < OY +YX, for any point Y, thus a sufficient
condition to make B; a bounding circle for 7, is
00,+0X, SRy .
O.X; < 5;R; , thus a sufficient condition to make B, a
bounding circle for T; is OO0, + s;Ry S R, .

Contractiveness tells us that

Solving
for R, gives

> 2 i

R
5 1-35,

Clearly, R, is a minimum when the two sides are equal.

Figure 3 illustrates the result.

Treating each transformation in this way gives us 7
concentric circles: we can derive a bounding circle B
for the fractal simply by taking the maximum of their
radii. The upper bound is therefore given by the formula

. 00,
= max,_,
— S'

i

Ry

The quality of the upper bound derived by this formula
depends acutely on the position chosen for the centre,

O. In the case of two transformations, taking O to be
F, gives a tighter bound than in Section 3. In general,

the optimum centre can be found easily using a searching
algorithm: alternatively, it is possible to derive the
optimum centre analytically[10].



Figure 3 The circle B is a bounding circle for T; if Ry 2

5. CONCLUSIONS

Plotting a fractal image from its transformations on the
screen of a digital computer requires advance knowledge
of a bounding area of the image. Previously, this
bounding area has been determined by trial and error.
We have derived a formula that expresses the radius of a
bounding circle for a fractal in terms of the transform-
ations representing the fractal. This will improve the
effectiveness of algorithms that plot IFS fractal images.
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