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ABSTRACT

A Bayes risk weighted vector quantizer {Bayes VQ) com-
bines compression and low-level classification of images by
incorporating a Bayes risk component into the distortion
measure used to design the code. The class posterior prob-
abilities required for the Bayes risk computation can be
estimated based on a labeled training sequence. We here
introduce two new methods for estimating these posteri-
ors. In particular, two types of tree-structured estimators
are constructed by applying the classification and regres-
sion tree algorithm CARTT to eight features of the train-
ing sequence. We apply the resulting Bayes VQ systems
to aerial photographs where the goal is to compress the
images and classify man-made and natural regions. These
systems provide classification superior to that of previous
work with Bayes VQ while maintaining similar compres-
sion performance. The systems also provide moderate to
substantial improvement in classification with only a small
loss in compression to performance obtained with a mod-
ified version of Kohonen’s “learning vector quantizer” and
with an independent design of quantizer and classifier.

1. INTRODUCTION

Compression and classification play important roles in com-
municating and interpreting digital images. With multi-
spectral or aerial imagery, for example, compression is use-
ful for storage and transmission, whereas classification can
enable the simultaneous or subsequent segmentation of these
images into different categories of terrain.

The general setup for the problem of compression and

classification consists of a joint random process {X(n), Y(n) :

n=0,1,...}, where the X(n) are k-dimensional real-valued
vectors and the Y (n) designate membership in a class and
take values in a set H = {0,1,---,M —1}. A VQ that
provides both compression and classification operates on
the observed sequence X and consists of three functions:
an encoder « that views only X and outputs a binary in-
dex ¢ = a(z), a decoder 8 that maps the indices into the
reproduction vectors 3(i) = X;, and a classifier § that as-
sociates a class label 6(i) € H for every encoder output
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index ¢ = 1,..., N. Because the index i can be used si-
multaneously to decompress and to classify the vector, the
classification is implicit in the compression, and hence does
not cost additional computation or bits once the image is
compressed.

The quality of the reproduction X = g(a(X)) for an
input X is measured by a nonnegative distortion, d(X, X).
For simplicity, we here consider the squared error distortion
d(X,X) = ||X - X||>. The average distortion

D(a, B) = E[d(X, B(a(X)))] (1)

is then the mean squared error (MSE). The quality of the
classifier is measured by the Bayes risk,

M-1M-1
B(a,8) = > > CuP(8(a(X))=kand Y =j)
o am
= Z Pla(X)y=1) Y 1(8(:) =k)
1=J(\)4_1 k=0
x > CuP(Y = jla(X) = i), (2)

where the indicator function 1 (expression) is 1 if the ex-
pression is true and 0 otherwise. The cost Cjx represents
the cost incurred when a class j vector is classified as class
k. We assume C;z = 0 when j = k.

A number of vector quantization algorithms have been
developed to address the compression or classification prob-
lem. Few of these methods, however, jointly optimize these
two signal processing techniques. For example, nearest
neighbor schemes, including the full search “learning vector
quantizer” (LVQ) [1], implicitly design the quantizer for
classification rather than compression. Other techniques
focus on the separate and independent design of quantizer
and classifier {2, 3]. An independent design might first in-
volve the design of the quantizer using the generalized Lloyd
algorithm, a descent algorithm that alternately optimizes
the encoder and decoder. A Bayes classifier, defined by
arg ming Zﬁ;l Cix x Pr(Y = jla(z)), would then be de-
signed for the VQ output a(X).

Bayes risk weighted vector quantization [3] jointly op-
timizes for compression and classification by incorporating
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a Bayes risk component into the distortion measure used
to design the quantizer, thereby enabling simultaneous op-
timization of a code with respect to both compression and
classification. Bayes VQ with posterior estimation [4, 5]
consists of a VQ preceded by a posterior estimator. The vQ
(either full search or tree-structured) uses a modified distor-
tion measure in the design of the compression code that al-
lows simultaneous optimization for both compression (using
squared error for general appearance) and Bayes risk (for
classification accuracy) by combining the two terms with a
Lagrangian importance weighting. The modified distortion
measure is .

Pxp(2:8,0) =z = 2|P + AT CP(Y = Uz).
The fidelity criterion is thus I pla,8,8) = Elpy p] =
D(a,8) + AB(«, §), where D and B are defined in (1) and
(2), respectively. This weighted combination allows trade-
offs between priorities for compression and classification.
The encoder selects the nearest neighbor with respect to the
modified distortion measure to determine the best codeword
representative. As with the generalized Lloyd algorithm,
we use a descent algorithm that in turn optimizes the en-
coder, decoder, and classifier. In the tree-structured design
we consider in this study, the trees are grown by choosing
the node that yields the largest ratio of decrease in average
(modified) distortion to increase in bit rate, and then are
pruned [6] in order to obtain optimal subtrees. We note
that the independent design of quantizer and classifier can
be considered as the special case of the Bayes VQ design
with A = 0.

Both the design and implementation of the Bayes VQ
require knowledge of the posterior probabilities. However,
these posteriors are not required by the decoder; and thus
no additional bits need be sent to transmit the information.
In the nonparametric case we must obtain an estimate P
based on the empirical class distribution of the learning set
Pr(llz). We want to use an estimator that is computa-
tionally simple, and thus we do not consider kernel esti-
mation or projection pursuit techniques here. In [4, 5, 7],
a computationally simple posterior estimator was described
and implemented into the Bayes VQ. The probabilities were
provided by a tree-structured vector quantizer (TSVQ) that
was designed on the raw pixel intensity vectors and that was
grown by splitting nodes that contributed most to the rela-
tive entropy distortion. We will refer to the tree-structured
version of that system as Bayes TSVQ with relative en-
tropy based posterior estimation (BTSVQ with RE p.e.).
That Bayes VQ system provided good performance com-
pared to that of the independent design and to that of a
modified version of LVQ (5], but improved posterior esti-
mation holds promise for better classification [7]. We here
present two improved posterior estimation techniques that
use eight features extracted from the learning set. In partic-
ular, we use the classification and regression tree algorithm
CART [8] to construct both a class probability tree and a
classification tree.

2. POSTERIOR ESTIMATION

We design two different estimators using feature vectors
that are extracted from the learning set to form the poste-
rior estimates used during the Bayes VQ design and encod-

ing. One estimator is a class probability tree and the other
is a classification tree. These two estimators differ only
in the pruning methods used. The trees allow a number
of candidate features and the selection of the best among
these upon which to split the data.

Assume a tree T has the set of terminal nodes T, so
that |T| denotes the number of terminal nodes in 7. Let L
denote the training set for a J-class problem. We associate
with each terminal node ¢ the estimates p(71t), 7 =1,..,J,
for the conditional probability of being in class j given node
t. Then for any vector z € ¢, the estimator d would provide
d(z) = (p(1]t),...,p(J|t)). We also divide the training set
L into two sets L; and Lz, and use L; to construct the
estimator d (or equivalently T), and use L, to obtain the
test sample estimate R**(T) of the risk of this estimator.
The test sample estimate R**(T) for the class probability
tree is formed as R*(T) = 3=, .+ >~ .(2n,i — d(i|24))? x p(2),
where for each intensity vector/class label pair (Tn, Jn), we
define J values {zn:} as zn; = 1if j, = i, 0 otherwise.
It is shown in [8] that this reduces to R¥*(T) = Zzei‘(l -
2, P°(51t)) x p(t), where 1 — >, p°(j]t) is defined as the
Gini index of diversity. Thus the class probability tree is
grown by splitting the node that most reduces the Gini
index, as this continually minimizes the estimate R'*(T)
for the mean squared error 3 (zn, — d(i|zs))?. The class
probability tree is then pruned upward using the criterion
R*(T) + o|T|, where « is a complexity parameter, and
where R*(T) = Z:ei‘ r**(t)p(t) and r**(t) is the within
node Gini index.

The second estimator we design is a classification tree
that is also grown by splitting the node that most reduces
the Gini index. However, this tree is pruned upward using
r**(t) as the within-node misclassification cost. The esti.
mates p(j|t),j = 1,...J, for a given vector £ are obtained
in a manner analogous to that used for the class probability
tree.

The trees are constructed using vectors consisting of
eight features that are extracted from the vectors in the
spatial domain. Given a vector X = (Xl,...,Xk)T with
class membership Y € {1, 2} (two-class problem), define 4;
as the mean vector and Z; as the covariance matrix for the
class i features. Fx is the 7 x 1 vector of features that are
computed from X and that are listed as 1 through 7 below.
We consider the following eight features:

. miny =min; X;,1=1,...,k
- maxy =max; X;,1=1,...,k
- Mx = %Zf:l X"

.ox = \/Zf:l(X‘ —mx)?

1
2
3
4
5. Sx=mx/ox
6
7
8
a

. Rx =maxx —minx

. medx =median(X)

LDx = F};(%)_l(m — u2), i.e. we compute
two-sample linear discriminant (LD) score for use as a

predictor using the previously described seven features as

components of the LD (even though these features are not

Gaussian) in addition to the predictors from which it was

computed.
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3. RESULTS

The goal was to compress an 8 bit per pixel (bpp) 512 x 512
aerial image and to identify regions as either man-made or
natural. Figure 1 presents a typical test image and the
hand-labeled classification for this image. In the classified
image, man-made regions are indicated in white whereas
natural regions are indicated in black.

The codebook design and image encoding were per-
formed using 4 x 4 pixel blocks. Simulations were per-
formed using six-fold cross-validation [8). We use PSNR as
the measure for compression error, where PSNR is defined
as 10log10(255% /MSE). The quality of the classifier is mea-
sured by the empirical Bayes risk given by (2). Equal costs
were assigned to the misclassification errors. The Bayes
risk thus signifies the fraction of the total vectors that are
misclassified. On average, the images consisted of 43.6 =+
24.6% natural vectors and 56.4 + 24.6% man-made vectors.
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Figure 2: Effect of bit rate on Bayes risk

We compare the proposed Bayes VQ systems with the
Bayes VQ with RE p.e. system of [5], an independent TSVQ
design, and a modified version of LVQ. The Bayes VQ de-
signs used A = 10°. Both the class probability trees and
classification trees were considerably less complex than the
corresponding relative entropy based posterior estimating
TSVQ. For the LVQ design, the codebook was initialized

ol
Figure 1: (a) Original 8 bpp aerial image and (b) original class labeled image

using the LVQ_PAK eveninit algorithm and then designed
using the optimized learning rate LVQ1 method, olug1 [9].
A modification of the resulting codebook (as described in
[5]) was imposed to improve the compression performance.
We will denote this modified version of LVQ as centroid-
based LVQ. In simulations, the number of iterations used
in the algorithm was equal to five times the number of train-
ing vectors.
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Figure 3: Effect of bit rate on PSNR

Figures 2 and 3 illustrate the classification and com-
pression performance obtained with the BTSVQ with class
probability tree system, the BTSVQ with classification tree
system, the BTSVQ with RE p.e. system of [5], the inde-
pendent TSVQ design, and centroid-based LVQ. Figure 4(a)
illustrates a test image compressed using the BTSVQ with
class probability tree system, and Figure 4(b) gives the cor-
responding classification obtained with the system. Both
the BTSVQ with class probability tree and the BTSVQ
with classification tree systems outperform the other three
methods in classification at all bit rates. The proposed
systems provide up to 18% relative gain (that is, with re-
spect to the percentage of possible improvement) over the
BTSVQ with RE p.e. system. The system using the class
probability tree slightly outperformed the system using the
classification tree. This may be an artifact of the particular
training sets we consider or may be something more sig-
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Figure 4: (a) Compressed image and (b) classified image using Bayes TSVQ with class probability tree at 0.5 bpp

nificant. In regards to the latter, it may be related to the
implicit bias-variance tradeoffs of the two techniques (as the
classification tree approach produces a greater bias in esti-
mating densities than the class probability tree approach).
BTSVQ with RE p.e. provides the next best classification
after the two proposed techniques, followed by centroid-
based LVQ and then the independent TSVQ design. Re-
call that LVQ uses full search while all the competitors use
tree-structured searches. The two approaches with BTSVQ
and CART estimated posteriors also provide compression
similar to that of BTSVQ with RE p.e. Although the in-
dependent design outperforms the Bayes TSVQ methods in
compression at the lower rates, the former’s classification
performance is quite poor. For instance, the BTSVQ with
class probability tree system offers up to 19% absolute gain
(or 45% relative gain) in classification performance over the
independent design for a penalization of less than 0.5 dB
in compression. In addition, the two BTSVQ techniques
with CART estimated posteriors outperformed centroid-
based LVQ in classification (substantially so at the lower
rates) for only a slight loss in compression. For example, at
the lower bit rates, the BTSVQ with class probability tree
provides up to 11% absolute gain (or 33% relative gain)
in classification performance over centroid-based LVQ for a
penalization of 0.2 dB. Without the centroid-based modifi-
cation, LVQ provides slightly less compression performance
than the BTSVQ systems with CART estimated posteriors
at the lower bit rates. In addition, the Bayes VQ systems
have the ability to trade off some of the substantial classifi-
cation improvement for some improvement in compression.

4. CONCLUSIONS

We proposed two techniques to estimate the posteriors re-
quired during Bayes VQ design and encoding. Each method
consisted of a tree-structured estimator that was constructed
by applying CART to eight features extracted from the
training set. The resulting systems outperformed the Bayes
VQ of [5] in classification, while maintaining similar com-
pression. For only a small loss in compression, the proposed
systems provided considerable improvement in classification
to centroid-based LVQ and to the independent design.
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