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ABSTRACT

In this paper we present a new algorithm for segmen-
tation of noisy or textured images using a multires-
olution Bayesian approach. Our algorithm is different
from previously proposed multiresolution segmentation
techniques in that we use a multiresolution Gaussian
autoregressive (AR) model for the pyramid representa-
tion of the observed image. Our algorithm also approx-
imates the “maximization of the posterior marginals”
(MPM) estimate of the pixel class labels at each resolu-
tion, from coarsest to finest, unlike previously proposed
techniques, which have been based on MAP estimation.
Experimental results are presented to demonstrate the
performance of the new algorithm.

1. INTRODUCTION

This paper addresses the problem of segmenting an im-
age using a statistical model. Each pixel in the ob-
served image must be assigned membership to one of
a finite number of classes depending on the statistical
properties of the pixel and its neighbors. The indi-
vidual pixel classifications, or labels, form a matrix or
two-dimensional field, with the same dimensions as the
observed image, in which the value at a given spatial
location reflects the class to which the corresponding
pixel in the observed image belongs. This matrix con-
taining the individual pixel classifications will be re-
ferred to as the label field. The label field is unknown
and must be estimated from the observed image.
Recently, several multiresolution approaches to im-
age segmentation have been proposed [1, 2, 3]. These
approaches estimate the label field first at coarse reso-
lutions and then proceed to finer resolutions to refine
the segmentation. In this paper we propose a new seg-
mentation algorithm which uses a multiresolution au-
toregressive (AR) model to model the observed data
pyramid, i.e., the multiresolution decomposition ob-
tained from the observed image. Our approach is dif-
ferent from previously proposed approaches in that we
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obtain a multiresolution representation of the observed
image and model this representation as a stochastic
process indexed by the nodes of a multiresolution lat-
tice. Previous approaches have used multiresolution
models for the pixel labels, but have used either single-
resolution representations of the observed image or mul-
tiresolution representations of the observed image with
the implicit assumption that the random variables at a
given level of the observed data pyramid are indepen-
dent from the random variables at other levels [1, 2, 3].
We feel that our approach is more appropriate since the
model we use incorporates the correlations between dif-
ferent levels of the observed data pyramid.

Our approach is also different from previousty pro-
posed multiresolution approaches in that we approx-
imate the “maximization of the posterior marginals”
(MPM) estimate of the label field, instead of the MAP
estimate [1, 2, 4]. This has two possible advantages.
First, the average cost function which the MPM esti-
mate minimizes is more appropriate for image segmen-
tation than the the average cost function which the
MAP estimate minimizes [4]. Second, the use of the
MPM criterion will allow us to use the EM algorithm
to estimate parameters of the probability mass function
of the pixel class labels, using the algorithm described

in [5].

2. NEW APPROACH

In our problem formulation the observed data Y is a
multiresolution representation of the observed image,
obtained using a Gaussian pyramid decomposition [6].
Thus, Y is a stochastic process indexed by the nodes
of a multiresolution lattice, such as the one shown in
Figure 1. Each level in the lattice corresponds to a
different spatial resolution, where level 0 represents the
finest spatial resolution and level M — 1 the coarsest
spatial resolution. The set of lattice points at level n
will be denoted S(*) and the random field containing
the classification of the nodes at level n will be denoted
X("). Each node in S(™) corresponds to 4™ pixels at the
original image spatial resolution. Hence, each random
variable in X (™) represents the classification of a block
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of 4" pixels in the original image.

To segment the observed image, two models will be
needed. A model will be needed for the conditional
probability density function of Y given the classifica-
tions of all nodes in the multiresolution lattice. We will
also need a model for the conditional probability mass
function of the label field X(*) given the MPM approx-
imations of the label fields at coarser resolutions.

2.1. Multiresolution AR Model

To simplify the discussion we will assume that the ran-
dom variables in Y are zero-mean, and that Y is in-
dexed by the nodes in a binary tree, as shown in Figure
2. Extension to the lattice shown in Figure 1 is a mat-
ter of notation.

In order to define the model for Y, we associate
with the binary tree the ordering of the nodes shown
in Figure 2. The nodes at level n are indexed from
2M-n o 2M-n+1 _ 1 where M is the number of levels
in the tree. Given a particular level n and a particular
node s € S® for some i > n, the index of the ancestor
of node s which lies in level n will be denoted d”(s).
For example, if s is node 11 in Figure 2, then d?(s) = 2
and d(s) = 5.

The model which will be used is a causal Gaussian
multiresolution AR model, where the notion of causal-
ity for our model is defined by the ordering of the nodes
of the tree defined above. In this model the random
variables Y7, ..., Yk, where Y, is the random variable
at node s and A is the total number of nodes in the
tree, are modeled as jointly Gaussian random variables
conditioned on the classification of the tree nodes. The
form of the AR model is

Yo = —ta,(WYems = a0, ¥z +Y) (1)

where node |s/2] is the parent of node s in the tree,
{az,(#)},7 = 1,2 are AR model parameters for class z,,
and Y/, ..., Y} is a sequence of independent, Gaussian
random variables. The variance of Y/ is given by

E[(Y])") = o2, (2)

Intuitively, this model can be described as follows: The
value of the random variable Y, can be predicted as a
linear combination of the values of the random vari-
ables at the previous node at the same resolution level
as node s and the parent node of node s. The predic-
tion errors Y7, ..., Y} form a sequence of independent
random variables. The parameters used for the predic-
tion of Y; depend on the class to which node s belongs,
i.e., z,. The variance of the prediction error Y] also
depends on z,.

Since the random variables Y/, ..., Y% are indepen-
dent Gaussian random variables, the form of the joint
conditional probability density function of Y{,...,Y

given the classification of all tree nodes is known. How-
ever, we need the joint conditional probability den-
sity function of Y;,..., Yk given the classification of
all tree nodes. By writing the sequences Y,...,Yx
and Yy, ..., Y as vectors, i.e., Y = [V1,..., Yk]T and
Y’ =[Y{,...,Y,]T, Y’ can be written as a linear trans-
formation of Y:

Y = AY (3)

where A is a matrix which can be determined from
Equation 1. Since Y’ is a linear combination of values
of Y at node s and nodes which precede node s, but not
at future nodes, the matrix A is lower triangular. Also,
since the coefficient of the term Y, in the expression
for Y/ is 1, all diagonal elements of A are 1. Thus the
Jacobian of the transformation from Y to Y’ is 1, and
the conditional probability density function of Y given
X (where X is the sequence X1,..., Xg) is [7]

K 2
Frxre® = [T e (-5 @

where
Ys = Ys + 0z, (1)ys—1 + ax,(z)y[s/QJ (5)

2.2. Model for Class Label Pyramid

At each spatial resolution the pixel class labels are
modeled as a Markov random field (MRF). Specifically,
the probability mass function of the label pyramid X,
px(x) =PX=x)=P(Xy ==z1,..,Xy = zn) is
assumed to have the form

px(x):%exp - Z Bt(z,, z,) (6)

{r,s}ecC

where z is a normalizing constant, 3 is the spatial in-
teraction parameter, C is the set of all cliques defined
on S (the set of all nodes in the multiresolution lattice),
and

0 ifz, ==z, -
e ={ ] §I 35 ™

For the work presented in this paper C contains all pairs
of nodes which are vertically or horizontally adjacent
and are at the same resolution level in the pyramid.
Correlations between different resolution levels in the
label pyramid are incorporated into the algorithm by
using as an initial value for the segmentation at level
n the classification obtained by upsampling the final
segmentation at level n + 1.

2.3. New Algorithm

The segmentation begins at the coarsest resolution level,
where *(M-1) | an approximation to the MPM estimate

2416



of X(M-1) is obtained using the algorithm described
in [5]. The algorithm then proceeds to finer resolutions
until ®(®), which is the final segmentation, is obtained.
We now describe the new segmentation algorithm
at resolution level n for a given value of n between 0 and
M — 2. First, we assume that (M= z(n+1) haye
already been obtained using the algorithm described
here. We will then obtain () using the MPM algo-
rithm described in [5]. To simplify notation, let
XD = (x| x(r-1)y (8)
and
X+ = (x4 x(M-1)) (9)
We will use a Gibbs sampler to generate a Markov chain
x' (where each element in the chain is a random field
indexed by the set S(*)) which converges in distribu-
tion to a random field with conditional probability mass
function

My &m0 ~(n+1)
PX iy, X o x<n+1>(x" by, % 8) (10)

which is the conditional probability mass function of
the label field at resolution n given the entire multi-
scale representation Y, the MPM approximations of
the label fields at coarser resolutions, and the values
of x(¥) for i < n obtained by propagating the classifi-
cations x(") down the tree to finer resolutions. These
values of x() for i < n are denoted xt(,,?, where the sth

@) ;

element of x gn 18
(x82) = a8, (11)

for 1 < n. O is a vector containing the unknown pa-
rameters of this probability mass function.

The objective of the MPM algorithm described in
[5] is to generate a Markov chain which converges in
distribution to a random field with conditional prob-

ability mass function pxly(x|y,0), where Y and X~

are single-resolution random fields and 8 contains the
mean and variance of each class. The problem we are
solving here is the same, except that now the Markov
chain generated by the Gibbs sampler will converge in
distribution to a random field with conditional proba-
bility mass function

. - n)y -1 22+
pX<n>;Y,X<n—x>,X<n+1>(x( Ny, &5V, 6) (12)

Using Bayes rule to determine the form for the condi-
tional probability mass function which will be used to
implement the Gibbs sampler, we obtain

- - (n)j,, z(n-1) z(n+1) _
pX(“)|Y,X(n—1),X(n+1) (X Iy7xdn , X ,6) e

(n-1) 2(n+1)
fY|X(n 1 X x(,.+1)()'lx ,x(") % ,6)

(n— 1) ~(n+1)
Iy Zinn Kimn V1% ,6)

_ _ (n)jz(n=1) z(n+1)

pX(n)IX(n—l) ,X(n-'-l) (X !xd" <X ) 6) (13)
The term in the denominator does not depend on x(").
The form for the conditional probability density func-
tion of Y will be determined using Equation 4 and

writing the conditional probability density function of
Y as

(ﬂ 1) x(n) A(n'*'l) 0)

fY]X(n-n X(n) X(,.+1)()'lx
K
(I (_(y;)?)
2 2
€5t i>n V2roZ, 202

K
1 (¥.)? v
- _ s 4
H - exp ( 507 (14)
xdn(,)

s€5() icn /270 Tan(s)

where in the second term ¥/ is computed using the coef-
ficients {az,a,, (J)}. Equation 14 is the equation which
will be used to incorporate the observed data Y into
the Gibbs sampler to implement the MPM algorithm.

After the estimate %(") has been obtained, the seg-
mentation algorithm proceeds to resolution n — 1 to
obtain %(*~1) using as an initial value for %(*~1) the
label field obtained by assigning at each node in S(*~1)
the classification of the node’s parent at resolution n.
This process is continued until (°) has been obtained.

3. EXPERIMENTAL RESULTS

For the experimental results described in this section,
the parameters which were assumed to be unknown
were the means of the L classes in the observed data
pyramid. These means were estimated simultaneously
with the segmentation as described in [5]. The val-
ues of the AR parameters (prediction coefficients and
prediction error variances) and the spatial interaction
parameter 3 were pre-selected.

Figure 3 shows results after applying the algorithm
described in the previous section to a textured image
composed of grass and wood. A three-level pyramid
was used. Fifty iterations of the algorithm in [5] were
performed at the coarsest resolution, with 10 iterations
of the algorithm described above performed at each of
the finer resolutions.

Figure 4 shows results after applying the segmenta-
tion algorithm to an x-ray mammography image. The
image shown on the left in Figure 4 was segmented us-
ing 3 pyramid levels, 10 iterations of the algorithm in
[5] at the coarse resolution, and 10 iterations of the
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algorithm described above at each of the finer resolu-
tions. The truth image, which identifies the location of
a stellate lesion, is shown in the middle in the figure,
and the segmented image is shown on the right. The
lesion was well segmented from its surrounding area.

4. CONCLUSION

We have presented a new multiresolution segmentation
algorithm. In future work we plan to add parameter
estimation for the AR parameters, investigate different
models for the label pyramid, and study the computa-
tional complexity of the algorithm.

A postscript version of this paper and the image
data sets are available via anonymous ftp to
skynet.ecn.purdue.eduin the directory
/pub/dist/delp/icassp95.
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Figure 1: Multiresolution lattice
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Figure 2: Binary tree
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Figure 3: Left: Original image; Right: Segmented im-
age.

Figure 4: Left: Original image; Middle: Truth image;
Right: Segmented image.
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