MULTIRESOLUTION GMRF MODELS FOR TEXTURE
SEGMENTATION

Santhana Krishnamachari and Rama Chellappa

Department of Electrical Engineering
Center for Automation Research and
Institute for Advanced Computer Studies
University of Maryland
College Park, MD 20742

ABSTRACT

A multiresolution model for Gauss Markov random
fields (GMRF) is presented. Coarser resolution sam-
ple fields are obtained by either subsampling or lo-
cal averaging the sample field at the fine resolution.
Although Markovianity is lost under such resolution
transformation, coarser resolution non-Markov ran-
dom fields can be effectively approximated by Markov
fields. We use a local conditional distribution invari-
ance approzimation to estimate the parameters of the
coarser resolution processes from the fine resolution
parameters. This multiresolution model is used to per-
form texture segmentation.

1. INTRODUCTION

Markov random field (MRF) models have been ex-
tensively used in image modeling to characterize prior
beliefs about various image features such as textures,
edges, region labels etc. and have been applied to
restoration, segmentation and other image processing
problems. One of the drawbacks of MRFs is that the
associated optimization schemes are iterative and com-
putationally expensive. Multiresolution schemes are
one of the recourses to reduce the computational bur-
den [6], [8], [4], [2] . Multiresolution schemes not only
help to speed up the computation, but also bring to-
gether features that are widely separated in the fine
resolution, resulting in their effective interaction at
coarse resolutions. In this paper, we present a mul-
tiresolution GMRF model based on local conditional
distribution invariance approximation and its applica-
tion to texture segmentation problem.

Let 20 = {i,/) 1 0<i<M-10<j<
M — 1} be a lattice. Let X% represent a random
vector, obtained by ordering the random variables on
the two-dimensional lattice ©(9), through a row-wise
scan. The elements of () are indexed by s, where
s = (s1,582). Let X(® be modeled by a GMRF, then
the joint probability density function of X(% can be
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written as follows:
exp{—3zT[Z(0]~ 1T}
(21) % (det (O

P(O)(X(o) =z)= (1)

where £(%) is the covariance matrix of X(©.

Equivalently, the process X(%) can be written in
terms of a non-causal interpolative representation. For
asite s, let 7(°) be the symmetric neighborhood, which
contains the set of sites that are chosen to be the neigh-
bors of X{%. In the rest of the paper, we always use
r to index into the neighbor set.

X0 = 50X, 40
ren(©)

0) - . .
where e ), 1s zero mean, spatially correlated, Gaussian

noise with variance [¢(®)]2. Hence a GMRF process
can be completely characterized by the set of parame-
ters (8, 02). Also X% exhibits the Markov property,

PO(X /X vt # 5,t € Q)
= POXO/XxO reqn®)
(287 = T ren 007
2[c(9]2 J
(2)

The power spectrum 55,0) of the process X(® can be
shown to be:

= ——
27 [0 (]2

(02

(0) 2 2
1-— ZTET)(O) fr " cos[FFriw1 + FFrows)

SO = 3)

where w = {wi,wz},and 0 < w; < M —1,0< wy <
M-1.

2. RESOLUTION TRANSFORMATION

Let ) represent the lattice obtained by subsam-
pling (or subsampling followed by local averaging)

0-7803-2431-5/95 $4.00 © 1995 |EEE



Q(O), k times. In this paper we restrict ourself to res-
olution transformation obtained by subsampling. But
the results can be easily extended to block-to-point
type transformation, where the coarse resolution data
is obtained by averaging the fine resolution data over
2x2 window.

The subsampling resolution transformation is de-
fined as:

X0 = X

defined for all s € Q).
Equivalently,

X® = Dk X,

where the matrix D&, has to be properly defined. The
resulting subsampled process X(¥) is Gaussian, with
covariance £(¥) = [DE|S(O)[DET.

The power spectrum of X(*) can be shown to be [8]:

1

k) _ (0)

S8 = gax D S (4)
reCx

where r' = ()2—‘4,,-7'1,51‘,"’-7'2) and Cpx = {r: 0 < r <

¥ _1,0< <28 -1}

It can be observed that this is similar to aliasing
due to sampling in time series applicatiols. It can be
observed that S&) cannot be written in the form of (3)
with a finite neighborhood. Therefore, the subsampled
process X (¥) is non-Markov, except for the special case
of second order separable correlation processes [8].

3. MARKOV APPROXIMATION

In the case of GMRFs, it is possible to find the
probability density function (pdf) of subsampled pro-
cesses. However, if the lower resolution data are mod-
eled by the exact non-Markov Gaussian measures, con-
ventional optimization techniques based on Markov
properties cannot be applied. In this section we show
that it is possible to obtain very good Markov approxi-
mations for coarser resolution processes based on mini-
mizing the Kullback-Leibler (KL) distance [7] between
local conditional distributions.

Let P(¥)(X(¥)) be the non-Markov pdf at the kth
resolution then a GMRF approximation f’;k)(X (%))
can be obtained such that, for r € n*), where p(¥)
is the neighbor set,

> k
PP(XP /X5 =
argmin DIPE(XP/XE) || POXH /X))
P?

(5)

where D(.||.) is the KL distance and P}k) is the family
all GMRF pdfs with the chosen neigborhood.

Since Pg(k) belongs to the family of GMRF density,
P¥*)(X,/X,4r) will be of the form in (2). Following
results can be obtained from (5).

The parameters (é(k), [6(F)]?) corresponding to
Pg(k)(X(k)) are obtained as follows:

5(8) . k
8 " =arg min Epuw[X{*) — Z) arXs(+)r]2 (6)
ren(k

~(k
and using the Q( ) obtained, we can estimate the [6(¥)]2
a's7

EP = Bpoo[X® - 3 6,5 xB
ren(k)

To simplify the notations, let Y be the vector con-
taining the neighborhood random variables in a proper
order. For a first order neighborhood,

(k) ()
Y = ( Xz;)um +X?1?)(1'°) )
Xs+(0,l) + Xs—-(O,l)

then,
é(k) = argminE,[X®*) — 2
< = gngn P[Xs Zaryr]
- ren
(T -
7] = BEOYE YT
and,
6 #P?

= Ep(X?) - B (XOYT)Ep (YY) By (XPY)
= B (Xx®%) - {" T B, (xMy),

If (6), results in a set of parameters that satis-
fies the stability (positivity) conditions (see [3]), then
Pg(k)(X§k)/X5ﬁ_),.) exactly equals P(k)(ng)/XS:),).
This results in local conditional distribution invariance,
which is a desirable property, especially because most
of the optimization techniques such as simulated an-
nealing [5], and iterated conditional mode [1] use the
local conditional distribution. If positivity conditions
are not satisfied, it 1s necessary to enforce the pos-
itivity constraints in the minimization of (6). Even
though only conditional distribution invariance is em-
phasized in the above model, it can be shown that P;k)
and P*) are “close” by comparing the corresponding
power spectral densities.

2408



The minimization requires the autocorrelation val-
ues Ep(k)(ng)Xfi),.) which can be computed, given
the GMRF parameters for X(°) as shown below for
subsampling resolution transformation.

x® = xQ)
EP(*)(X‘Sk)X.Si)r = Epw (X§21X§2%a+r))
1 (A5 AR AS)
Epw (X(O)X(O)) - 17732 1732
P r q M2 SGX‘Q(:O) — 2[_0(0)]T¢_3

where A; = exp(v—=1%%).

4. TEXTURE SEGMENTATION

Now, we present the application of the multireso-
lution model to texture segmentation. Texture seg-
mentation problem is assigning a label, say from
(1,2,...,V) to the sites on the lattice, where the la-
bel stands for the texture class to which the site be-
longs to. Different textures in an image are modeled by
GMRF models with different parameters represented
by (8(v),0%(v)), v € {1,2,...V}. The intensity pro-
cess given the label process is defined as follows:

P(X,=z,/L,=v,X;, L, €En)
1
— 1 —— [ — z : 2
exp{ 20_2(,0)[1:3 9,-('0)13,.*_,-] }

- :;27!’02(1)) oyt

The label process is modeled by an MRF.

PL=D=Lexp{8 Y U(L))
seq
where, U(l,) is the number of neighbors that have the
same label as [,.

Now given the intensity process, the label process
can be estimated by minimizing a suitable criterion.
The mazimum a posterior (MAP) error criterion solu-
tion can be obtained by:

maz [ P(X, L) = maz [ P(X/L)P(L). (7)

‘This optimization requires stochastic relaxation meth-
ods and is computationally very expensive. So, we
restrict ourselves to iterated conditional mode (ICM)
method [1], a greedy algorithm that converges to a
local maxima. The ICM solution is obtained by:

mazp, P(L,/L;,X,,X;)
P(Xs/X; Ly, L.)P(Ls/L,)
log[o(v)] — BU(Ls = v)

1
+ %—2(—”)'[2:3 - gﬂr(v)z,+,]2.

=maxrr,

= ming,

(8)

Figure 1:
Brodatz Textures

First, it is assumed that the number of texture
classes and the corresponding GMRF parameters at
the fine resolution are known. Second, GMRF param-
eters at lower resolutions are obtained by the local
conditional distribution invariance approximation as
discussed before. Then segmentation is performed at
the coarsest resolution by minimizing (8) with the cor-
responding parameters and the results of segmentation
are passed on to the immediate higher resolution and
so on until the fine resolution is reached. Figure 1
contains grass, calf leather, wool and wood textures.
The original GMRF parameters at fine resclution are
estimated by a maximum likelihood estimation. Fig-
ure 2 shows the single resolution segmentation with
14.27% misclassification and Figure 3 shows the mul-
tiresolution segmentation with 8.47% misclassification.
Figure 4 shows a section of multispectral sensor image
over Africa. (The image has been displayed after his-
togram equalization, the classes are not so disparate in
the actual image). Unfortunately exact class maps are
not available. However, we chose three classes corre-
sponding to river, forest, deforestation. Figure 5 shows
the single resolution result and Figure 6 shows the
multiresolution result. Obviously, it can be observed
that the multiresolution algorithm has performed bet-
ter. We have experimented on simulated, Brodatz tex-
tures and real satellite images and have found the mul-
tiresolution scheme to perform better with much lesser
computation. In general, this multiresolution GMRF
model] can be used in any application that uses GMRF
models, like restoration, classification, segmentation.
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Figure 4: Remote Sensed Image

Figure 5: Single Resolution Segmentation

Figure 6: Multiresolution Segmentation



