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ABSTRACT

For the nonlinear classes of filters based on the me-
dian archetype, e.g. stack, Weighted Order Statistics
(WOS), morphological filters the techniques exploiting
recursiveness of embedded structures were not used yet.

We investigate in this paper the possibilities of im-
proving the speed of the optimal design techniques re-
stating the optimal design problem as a sequence of
optimal problems for embedded structures.

The speed up effect of recursive-in-order design tech-
niques is very significant but it is not the only benefit
of this principle: it also allows the evaluation of the
optimal structure of the filter, comparing the perfor-
mances of the optimal filters having various structural
parameters and observing where the performance index
curve starts to flatten with the increase in the structure
7 size” .

1. INTRODUCTION
The linear filtering literature is very reach in techniques

used for exploiting the recursiveness of the model pa-
rameter estimates for embedded structures.

In the nonlinear filtering based on polynomial Volterra

approximations, the recursive in order structure plays
a significant role in improving the efficiency of the es-
timation algorithms which would otherwise require a
high computational effort.

For the stack type nonlinear filters the ”order” of
the filter can be defined as the parameter(s) which char-
acterize the shape of the processing window around the
current sample while the set of parameters, which can
be modified when the shape of the window is fixed,
will be called model parameters. These algorithms fall
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inside two main categories: optimal design in the bi-
nary domain (reducing the integer signal case to the
binary one through threshold decomposition) and di-
rect design in the integer domain using various search
strategies (usually based on gradient techniques).

We investigate here the algorithmic aspects of set-
ting in an embedded structure the problem of optimal
nonlinear Boolean and stack filter design in the thresh-
old domain. We also give examples showing the solu-
tion of opiimal structure selection problem which can
be seen as a side benefit, virtually with no extra-cost,
of the current optimal design recursive in order proce-
dures.

2. OPTIMAL BOOLEAN FILTER DESIGN

We elaborate here on the procedure presented in [5],[6]
for computing the cost coefficients associated with the
MAE of the signals modelled by a Markov chain.

The number of operations required for computing
the cost coefficients ¢y . with the fixed order algo-
rithm is @O(2V Nn?), while using the order recursive
algorithm we will obtain all the cost coefficients

EN+1,Ner - 1 EN,N,

with only @(2¥+1n?) operations (the integer N, defines
the position of the current sample inside the N-length
processing window).

The Markov chain (MC) used to model the signals
has a finite state space @ = {q1,¢2,...,¢n} and a tran-
sition probability matrix P, with elements P(i,j) =
Prob(g(t+ 1) = ¢;]¢9(t) = ¢;). The desired (original)
signal S(¢t) and the perturbed signal X(t) are deter-
ministic functions of state:

FF:Q—-{0,1} ; S@t) =5 (alt+ No))
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FQ—1{0,1} 5 X =fF@t+N) (1)

The following vectors will be used in the sequel (note
that all vectors will be underlined):

o= P P’
ix [fX(QI)i)fX(qn)]T (2)
The limiting probabilities of the Markov chain, = =

[7(q1), 7(q2), - - -, 7(gn)]T, result as the solution of the
system

z=PTz, Y n(@)=1, (3)
i=1
and correspond to the stationary probability distribu-
tion of the states of the MC model.
The structure of the filter is determined by the pro-
cessing window of the filter, which will be denoted by

X(thm = [X{E+1-N),...,X(t+m—N)]

[FX @ +D),.., fFat+m)]  (4)

(the subscript 1: m will be used to specify the length,
m, of the vector, while the subscript k will specify the
k-th entry of the vector).

Problem Optimality problem for embedded Boolean and
stack filter structures

Given

o the Markov chain (P, X, f%);

¢ the structural parameter, m, of the embedded fil-
tering windows, [X]1.m;

o the fixed integer N. specifying the position of
the current desired signal, relative to the filter-
ing window;

find the optimal Boolean or stack filter, determined by
the Boolean function g},, for each window structure,
minimizing the criterion

Im(gm) = EIS(t) — gm(X()1:m)] ()

0O

Denote by k., the m-dimensional vector having
as entries the bits of the binary representation of the
integer k¥ when using m bits (k, is the most significant
bit and k,, is the least significant bit). The criterion
(5) can be rewritten in the form (see [1],[6])

2m-1

Jm(gm) = CO,,. + Z cm,Nc(iI:m)gm(ilzm) (6)

i=0

where the cost coefficients are given by

Cm,N. (il:m) =
= P‘I’Ob(l(t)l:m = il:m) S(t)
- PTOb(_X_(t)lzm = il:m: S(t)

0)
(T
for all integers ¢ = 0,...,2™ — 1. The solution of the
embedded problem will be shown to be more effective
than solving individually each optimal problem, due to
the order recursive procedure for the cost coeflicients,
which is the main computational task in deriving the
optimal filters.

In order to derive recursive formulas, some auxil-
iary variables will be introduced (which are similar to
standard variables used in Hidden Markov Model esti-
mation algorithms [3]):

Qm(il:m) = (8)
PrOb(_(t)I:m = il:m: q(t + m) = ql)

PrOb(l(t)l:m = il:my Q(t + m) = qﬂ)

When the probabilities in (8) are computed for the
same joint events, but including also S{(t) = f5(q(t +
N.)) =0 (or S(t) = f5(q(t + N.)) = 1), corresponding
to the joint limiting probabilities, the auxiliary vari-
ables will be denoted by a v (or ay, n_). The last
auxiliary variable is

g-ret,Nc (il:m) = Q-(r)n,Nc (ilzm) - —rln,Nc (ilzm) (9)

which can be used to compute the cost coefficients as
follows

Cm,N. (l'lzm) - l’{:mgf‘l}‘l,NC (il:m) (10)
which is a straightforward restating of (7) (1 denotes
the vector having all the entries equal to 1). The fol-
lowing notation will be useful for stating the recursions
for the auxiliary variables:

vob=by+ by, (11)

(logic coincidence function between the vector v and
the binary scalar b € {0,1}), and we will denote

P = diag[fX o 5] PT (12)

Lemma
1. The following recursions hold true

Qm+1([£1:m b]) =
Q$1+1,Nc([i'21:m b]) =

P[b]g.m (glzm) (13)

P[b]gre),Nc (£1:m)
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for all binary vectors z,.,, and binary scalars 5. The
first recursion holds for all m, but the second only for
m > N,.

2. For m = N¢, the connection between the auxiliary
variables is

an. v (1.y.) = (diag[f® o 0] — diag[f® o 1]))ay, (14)

3. The initialization of the recursions is accomplished
taking a; (1) = diag[f* o1]x and o, (0) = diag[f* o0]x.
O The proof is omitted due to space limitation.

Now let us group in matrices the auxiliary vectors
for all integers i = 0,...,2™ ~ 1

m = (2 (O1.m) -2 (@7 = 1) ] (15)

and similarly define a5 y_.

Then straightforward computations lead to the for-
mulas presented algorithmically in Table 1. This al-
gorithm exploits the ”right concatenation” recursive
structure of the processing window z,.,. ., = [z;.,,b]
used in (13). Since a recursion similar to (13) can
be obtained for ”left concatenation” structures, vari-
ous algorithms can be obtained, using combinations of
the right and left enlarging of the processing window
(which will correspond to different descending paths in
the tree in Table 2.

3. OPTIMAL STACK FILTER DESIGN

The cost coefficients found using the algorithm in Ta-
ble 1 can now be used to design the optimal stack filter
using the stacking matrix concept presented in [4]. The
modular and recursive in order structure of the stacking
matrix can be efficiently combined with the stages Ta-
ble 1 to obtain a procedure which is recursive-in-order
for stack filter design.

4. STRUCTURE SELECTION USING THE
RECURSIVE IN ORDER PROCEDURES

There is an intensive effort in solving theoretically the
problem of best structure selection for embedded struc-
ture in the signal processing area.

The basic rationale under most of the methods pro-
posed is to combine the performance criterion which
must be minimized at each order stage of the optimal
design (criterion which is obviously decreasing with the
increase of the ”order”) with a penalty term which is
increasing with the order.

This is also equivalent to finding a way to evaluate
when the decrease in the performance criterion is too

small to justify the increasing of the cost due to the use
of a larger filter structure.

We illustrate by means of an example the ease of
structure selection when using the fast order-recursive
procedures.

In Table 2 we show the performance criterion for
embedded structures starting from a window of size
3 samples around the central sample and ending with
structures having 7 samples. It is obvious that the best
structure for the optimal filter is (5,3) (5 samples, the
current sample in the middle), because enlarging it, no
increase in the performance cost can be gained, in the
case of stack filters.

The saturation effect in increasing the size of the
window is obvious. Also it is interesting to note the
effect on the criterion value caused by the position of
the current pixel inside the processing window.
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l.form=2to N

1.3.1

1.3.2

1.1 if (m < N.) then
1.2 if (m = N;) then

1.3 if (m > N,) then

ay = [diag[_j_rx ol]x

diag[ix ollx

am = [P[O]am—l P[l]am—l]

ola)

“'[A]\rc =[P [O]QL?L,

m,!

1T A
Em,N, =1 an N

v, = (I — diag(f°))am,n,

N Pma£ﬂ1 ~.]

riV¥e

gm,Nc = (Q'“v,vc < 0)

1.3.3 Optimal Boolean filter of ”order” m (in Matlab® notation)

Table 1: Fast Order Recursive Cost Coefficient Computation and Optimal Boolean Filter Design

G2)
0.0932
0.0932
(4,2) (4,3)
0.0532 0.0932
0.0932 0.0932
&%) ©3) 59)
0.0802 0.0815 0.080% -
0.0979 0.0904 0.0979
0.0743 0.6730 0.0730 0.0743
0.0998 0.0904 0.0904 0.0698
72) 73 7A) 75 7.6)
0.0739 0.0692 0.0692 0.0692 0.0739
0.0998 0.0904 0.0904 0.0904 0.0998

Table 2: Structure Selection Tree (Up) The Structural Parameters (N, N,); (Middle) MAE for Boolean Filter:

(Bottom) MAE for Stack Filter.
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