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ABSTRACT

Our previous work aimed at reducing the blocking dis-
tortion of DCT coded images is further improved by
introducing the Optimal PSNR Estimated Spectrum
Adaptive Postfilter (ESAP) Algorithm. ESAP searches
for a one dimensional log-sigmoid weighting function
which, when applied to the separable, interpolated lo-
cal block estimated spectrum of the coded image, min-
imizes the Mean Square Error (MMSE) with respect to
the original image using a 2-D steepest descent search.
Convergence is obtained in a few iterations for integer
parameters. A unique maximum PSNR is guaranteed
given the asymptotic exponential overshoot behavior
of the surface generated by ESAP. We obtained PSNR
improvement of 1.5 dB over nonpostfiltered JPEG im-
ages as well as subjective improvement. ESAP is based
on a DFT analysis of the DCT basis functions and uses
spatially adaptive separable FIR postfilters.

1. INTRODUCTION

There have been a number of methods to reduce DCT
blocking [1, 2, 3, 4]. In [5] we proposed the Resid-
ual Spectra Adaptive Postfilter. RSAP is an optional
method for image enhancement external to a JPEG
Coder. It improves the subjective quality and increases
the objective PSNR measure over non-postfiltered im-
ages by 1.0 dB without increasing the bit rate.

We now further develop RSAP into the ESAP! al-
gorithm (Figure 1) and apply it to 512x512 images.
ESAP iteratively searches for the optimal adaptively
postfiltered image with the MMSE with respect to the
original image at the encoder using a steepest descent

This work was supported by the NASA Goddard Space
Flight Center Part-Time Graduate Study Program.

'In order to avoid confusion with the standard usage of the
term Residual which implies a difference, the modified algorithm
is now renamed Estimated Spectrum Adaptive Postfilter to in-
dicate a localized spectral estimation directly obtained from the
DCT coefficients.
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Figure 1: Block diagram of the Estimated Spectrum
Adaptive Postfilter Algorithm extension to the JPEG
DCT coder where Z is the postfiltered image and & is
the non-postfiltered decoded JPEG image.

search. A one-dimensional log-sigmoid weighting func-
tion is separably applied to both the interpolated verti-
cal and interpolated horizontal frequency images. Once
the integer steepness and bias values associated with
the optimal log-sigmoid frequency weighting curve are
found, they are transmitted as a negligible single over-
head byte to the decoder. The high four bits represent
a [-3..12] steepness range while the low four bits contain
a [-3..12] bias range.

2. ESTIMATED SPECTRUM ADAPTIVE
POSTFILTER

The waveform of the DFTs of each DCT basis function
can be derived by using the Modulation Theorem"

dfafuln) 22T SX®OWE ()

Multiplication of a cosine function by a rectangular
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Figure 2: DCT Basis Functions f;[n] and the magni-
tudes of their 256-point DFTs |F;(k)}, j =0..7, N = 8.

window in the time domain 1s equivalent to the circular
convolution of a sinc-shaped rectangular window trans-
form W(k) with an ideal pair of impulses N6(k & ko)
producing the |F;(k)| waveforms shown in Figure 2. A
DFT analysis (Sect 7.4 [6],{7]) in conjunction with Fig-
ure 2 reveals that the ripples or sidelobes of the DFT
of each DCT basis function, shown as dashed lines,
represent the DCT block discontinuities for any par-
ticular spatial frequency. The window’s width affects
the main lobe frequency localization resolution and si-
multaneously introduces ripples. The ripples contain
most of the out-of-band blocking distortion while the
main lobes represent the in-band main frequency con-
tent. Therefore, if we extend the analysis to 2-D and
neglect aliasing, removal of the DCT spatial blocking
is achieved by filtering the ripple in the frequency do-
main. i

To obtain a local spectral estimate X;(ky,k2) we
look at the dequantized coefficient values C;(ky, k3) for
each 8x8 block 7 of the decoded image &[n,n2]. The
current block spectral bandwidth is found by inspection
of the highest 2-D frequency present in a block. Some
of the intermediate coefficients could be 0. Based on
the fact that decoded blocks mostly contain low fre-

(a) (b)

Figure 3: (a) 64x64 Non-Interpolated Vertical Fre-
quency (b) 64x64 Non-Interpolated Horizontal Fre-
quency for Lena image @ 0.25 BPP.

Table 1. Coefficient-Block Bandwidth relationship.

DCT Coeffs. Present Normalized Bandwidths

co 0.1257

g, C1 0.2507

€o,C1,C2 0.3757

€0, C1,€2,C3 0.5007

o, C1,€2,€3,C4 0.6257

o, C1, €2, €3, €4, C5 0.7507

€0, €1, €2, €3, €4, C5, C 0.8757
¢g, C1, C2,C3, C4, C5, C6, CT 1.07

quency coefficients we get the coefficient-bandwidth re-
lationship shown in Table 1. For example, if the de-
coded block’s highest coefficient is C(2,5), we say in a
deterministic way, that the vertical bandwidth is 0.3757
and the horizontal bandwidth is 0.7507. This 2-D lo-
cal bandwidth, denoted Lp(i) is spatially centered
in the middle of the 8x8 block. We obtain two 64x64
frequency images for 512x512 pixel images: the Non-
Interpolated DCT Vertical Frequency Image and the
Non-Interpolated DCT Horizontal Frequency Image

shown in Figures 3(a) and 3(b) respectively.-
Each non-interpolated frequency image is then in-
terpolated to the original 512x512 size by using

(-1

Bul,uz[nl,ng] = 64 Z LB(i) x

i=0

12772 ) 127/2
sin Z(ny +my —dy;)

Z w(ny +my —dy;) Z

my==127/2 mo=-127/2

sin £(n2 + m2 — dz;)
w(ny + mg — dy;)
(2)
where (my, my) are restricted to the mid-block values
(..-5/2,-3/2,-1/2,1/2,3/2,5/2, ...) and (dy,, d>,) are
displacement values for each mid-block point given by
di, = (i/64) * 8 + 3.5 and dp, = (¢ * 8) mod 512 + 3.5.
The division /64 is an integer truncated division.

2388



(a) (b)

Figure 4: Log-Sigmoid (a) 512x512 Interpolated Verti-
cal Frequency (b) 512x512 Interpolated Horizontal Fre-
quency for Lena image @ 0.25 BPP.

PSNR (dB)

Steepness

Figure 5: ESAP PSNR as function of Steepness and
Bias for the 512x512 JPEG Lena’s image @ 0.25 BPP.

Next both interpolated frequency images are weighted

with the log-sigmoid [8] function

1
1+ e-Dw—172)+0] ()

logsig(s,w,b) =

where s and b are the steepness and bias to be deter-
mined during encoding and w is the normalized fre-
quency [0..1]. This weighting is iteratively repeated
over the PSNR surface until the maximum PSNR is
obtained. The optimal (S,B) values are transmitted to
the decoder as a byte of side information. The result
of this operation is shown in Figures 4(a) and 4(b).

Figure 5 shows the Lena ESAP surface as a func-
tion of steepness and bias at a 32:1 Compression Ratio.
Note the optimal (S,B) pair at (3,0). For comparison,
Figure 6 shows the optimal (3,0) logsig function and
the previous RSAP frequency weighting.

The interpolated local 2-D bandwidth B, .,[n1, ns]

Output 1
Frequency

(xm) 0.8} RSAP

0.6;
ESAP
0.4}

02—

% 02 04 06 o8

Input Frequency (x)

Figure 6: Log-Sigmoid frequency weighting function.

obtained from (2) and weighted by (3) allows a pixel-
by-pixel adaptive convolution using a set of 128 pre-
computed Non-causal Hamming Window 1-D Low Pass
Filters. ESAP convolves the current #[n;, ny] pixel’s re-
gion with the 2-D non-causal separable adaptive LPF
h(ni,ns] = hi [n1] hi,[n2] where 1 < 12 < 128 and
whose cutoffs are oy = (I1/128)7, Wa = (I2/128)7 to
obtain the optimal PSNR postfiltered image. Figure 7
shows a non-postfiltered JPEG decoded image. Fig-
ure 8 shows the optimal ESAP image.

3. RESULTS

The following PSNR? results were obtained for the
8-BPP grey-scale test images below. All images are
512x512 except Peppers which is 256x256.

Table 2. ESAP PSNR Values

Image BPP PSNR (S,B) A
Peppers NPF*® 0.25 30.89

Peppers ESAP* 0.25 3239 (4,00 +1.50
Lena NPF 0.25 31.46

Lena ESAP 0.25 3245 (3,00 +0.99
Fruits NPF 0.25 30.01

Fruits ESAP 0.25 30.08 (9,2) +40.07
New Orleans NPF 0.33 32.69

New Orleans ESAP 0.33 3346 (2,0) +40.77
Wash D.C. NPF 0.33 34.19

Wash D.C. ESAP 0.33 3468 (2,00 +0.49

2PSNR = 10log errmr—eepy22(255)7
120 2y o FlH1 2] =2[n1m2])?
where z is the original image, £ is the decoded image and N
is the image size.
3NPF = No Post-Filtering, JPEG decoded only.
4ESAP = Optimal PSNR Estimated Spectrum Adaptively
Postfiltered using 17x17 FIR filter.
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Figure 7: JPEG coded Peppers image @ (.25 BPP,
30.89 dB PSNR.

Figure 8: Optimal PSNR ESAP Peppers image @ 0.25
BPP, 32.39 dB PSNR.

4. CONCLUSION

ESAP reduces DCT blocking. Blocking appears as side
lobes in the frequency domain. ESAP filters the side
lobes to minimize blocking and to improve the PSNR,
and perceived quality. ESAP reuses each block’s DCT
coeflicients to estimate its frequency content. This
information is interpolated, then a steepest descent
search for the MMSE (maximum PSNR) log-sigmoid
frequency weighting function is performed at the en-
coder. The optimal postfilter is completely character-
ized by the dequantized DCT coefficients and the op-
timal (S,B) parameters transmitted to the decoder as
a negligible single byte. ESAP exploits the Human Vi-
sual System frequency masking characteristics. Based
on its tolerance to quantization errors in the high fre-
quency regions ESAP performs almost no filtering there
while it adaptively filters low frequency regions to re-
duce blocking and restore the smoothness without sig-
nificantly reducing the crispness of the image.

PSNR improvements of 1.5 dB can be obtained with
ESAP. These compare favorably to other blocking re-
duction algorithms [1-5]. ESAP is an asymmetric post-
filtering technique. It can converge to the optimal
PSNR in as few as nine iterations with the proper
choice of initial integer (S,B) parameters. However,
it requires only one iteration for any image at the de-
coder. ESAP’s current computational complexity is
O(N*/4) for the initial local pixel frequency interpo-
lation and O((M N)?) adds, O(N*M?/4) multiplica-
tions for each iteration of the adaptive convolution (N
is the image size and M is the filter size). ESAP showed
its robustness, data independence and adaptability by
improving the PSNR of the decoded images and by ef-
fectively removing blocking while preserving important
edge information.
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