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ABSTRACT

One problem of image interpolation refers to magnify-
ing a small image without loss in image clarity. We
propose a wavelet based method which estimates the
higher resolution information needed to sharpen the
image. This method extrapolates the wavelet trans-
form of the higher resolution based on the evolution
of the wavelet transform extrema across the scales.
By identifying three constraints that the higher res-
olution information needs to obey, we enhance the re-
constructed image through alternating projections onto
the sets defined by these constraints.

1. Introduction

Given a small image, the classic problem of image in-
terpolation is to magnify the image many times with-
out loss in the sharpness of the picture. Some existing
methods such as bilinear and spline interpolations gen-
erate blurred images since they do not utilize any in-
formation relevant to preserving the image clarity. To
deblur these images, one could use the standard ap-
proach of unsharp masking [1]. Other methods include
modeling the edges or filtering with nonlinear filters
to boost the high frequencies needed to make an image
look sharper. In this paper, we propose a wavelet based
method which estimates the higher resolution informa-
tion needed to sharpen the image.

This information is obtained by extrapolating the
wavelet transform of the higher resolution based on
the evolution of wavelet transform extrema across the
scales. The motivation for this algorithm comes from
the fact that wavelet transform modulus maxima cap-
ture the sharp variations of a signal, and that their
evolution across the scales characterizes the local reg-
ularity of the signal [2]. Discussion will be focused on
magnifying the data by a factor of 2 for simplicity, al-
though larger magnification could be achieved through
iteratively performing the algorithm.

2. Enhancement Algorithm

The 1-D scenario is described first, and the 2-D prob-
lem will be treated as an extension of the 1-D case.
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Figure 1 illustrates the problem model. We model the
available waveform f as being obtained from the high
resolution signal fy, which we want to recover, by low-
pass filtering followed by downsampling by a factor of
2. Denote by Ho(z) a lowpass filter, and by H;(z) a
highpass filter such that the two filters, together with
a synthesis pair Go(z) and Gi(z), constitute a perfect
reconstruction nonsubsampled filter bank. Note that
the filter bank in the model is arbitrary, but we con-
Jecture that as long as it is reasonable (i.e. a good
lowpass/highpass pair of filters), the result of our algo-
rithm will not depend strongly on the filter bank. The
perfect reconstruction condition on nonsubsampled fil-
ter banks has the form

HQ(Z)GO(Z) + Hl(z)Gl(z) =1. (1)

In order to perfectly reconstruct the high resolution
signal, we need to know both its highpass component
gs and its lowpass component f;. However, only f, the
downsampled version of f,, is available. A standard
approach would be to interpolate f using, for example,
linear or spline interpolation, and possibly followed by
some enhancement algorithm such as highpass filtering
to deblur the result. The enhancement algorithm pre-
sented here is based on estimating the high frequency
component g, which is then combined with an estimate
of fs, through the synthesis filter bank, to give a recon-
structed version of the high resolution signal.

An initial estimate fs of the low frequency compo-
nent f, can be obtained by simply interpolating f, for
instance, using linear interpolation. The approach to
estimating g, is to find its local extrema by analyzing
the available data f. It is based on the fact that local
extrema of the wavelet transform propagate across the
scales, which can be used for extrapolation of higher
frequency scales. Figure 2 shows an example of a wave-
form and its wavelet transform. The wavelet transform
here denotes a linear operator implemented by an it-
erated nonsubsampled filter bank, as shown in Figure
3. The waveform in Figure 2 consists of a step edge, a
single impulse, and their smoothed versions. It can be
seen that the local extrema of the wavelet transform
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Figure 1: Problem Model
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Figure 2: A synthetic waveform and its transforms, showing
the propagation of the wavelet transform extrema.

are induced by singularities in the signal and that they
propagate across the scales. The evolution of the ex-
trema values corresponding to a singularity is described
by the equation

Wih[z$)] = K, 2% | j=1,2,...,J, (2)

where W;h is the wavelet transform of the input signal

h at scale j, :cgf ) is the location of the local extremum
of scale j corresponding to the nth singularity, o, is the
Lipschitz regularity of f at the singular point, and K,
is a nonzero constant. Note that equation (2) actually
holds for continuous time signals and the discretization
introduces some deviation.

Consider now again the problem of finding an esti-
mate §; of g,. It can be shown that the wavelet trans-
form of f (Figure 1) is the decimated version, by a
factor of 2, of the wavelet transform of f; starting from
the second scale. The main idea of our algorithm is to
extrapolate the higher scale signal g from the evolution
of local extrema across the coarser scales. The signal
s is then obtained by interpolating (linearly) between
these local extrema.

Signal enhancement is performed by recognizing that
the initial estimates of f, and g, can be further im-
proved by identifying constraints that they should obey.
The algorithm alternatingly projects the signal to sat-
isfy three basic constraints:

1. The waveforms ( . §s) must be in the subspace
V of I(Z?), where V denotes the range of the
wavelet transform.

Figure 3: Wavelet Transform
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Figure 4: The projection operator onto the subspace V.

2. The downsampled version of f, must be equal to
f, which is the original signal that is available.

3. The local extrema of §, should reflect sharp vari-
ations in fy, i.e. their values and locations are
determined by singularities in fg.

Let V, S, and E be sets in [2(Z?) denoting, respectively,
the sets of points which satisfy these three constraints.
The reconstructed pair (fs,§,) should belong to the
sets V and S, and projecting it onto E improves the
signal clarity.

Projecting (f,,gs) onto the subspace V consists of
filtering by the synthesis filter bank, followed by the
analysis filter bank (see Figure 4). The synthesis fil-
ters used in the implementation of this projection op-
erator should be selected as Go(z) = Ho(z71)/P(z),
G1(z) = Hi(z71)/P(z), where P(z) = Ho(z)Ho(z™1)+
Hy(z)H1(27'). In the case of power complementary
analysis filters, Ho(z)Ho(z7') + Hi(2)Hi(z71) = 1,
this reduces to Go(z) = Ho(z71), Gi(z) = Hy(z7Y).
For a detailed analysis of the projection operator onto
V for both 1-D and 2-D signals, the reader is referred
to [3].

Projection of ( fs, §s) onto S amounts to assigning
values of f to even samples of f.

The subspace V and the convex set S are well-
defined, but the convex set E depends on our knowl-
edge of the singularities of fo. In Section 3, we dis-
cuss constraining the set £ with varying degrees of le-
niency on the values and locations of the wavelet trans-
form extrema, and finding a corresponding projection

of (f,,g,) onto E.

3. Implementation

For the extrapolation scheme, we need to first select
important singularities and associate the correspond-
Ing extrema across the scales. Since the highest scale
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contains an abundance of extrema and is more sensi-
tive to noise, selection of the extrema is done at the
second scale. Due to discretization, the estimated Lip-
schitz regularity o disagrees from what it should be
for a continuous time signal. Hence, scaling constants
are multiplied to each scale of the wavelet transform,
W; f, and these constants are found empirically so as
to make the discrete time step function have a = 0.
Furthermore, the parameters a, and K, of a singular
point are estimated from the associated extrema from
(2) using the least squared error (LSE) criterion.

Those extrema of the first scale that do not prop-
agate to the coarser scales are simply assigned to the
extrapolated scale using the same values and locations.

One of the constraints on the estimated waveform
3. is that its local extrema should reflect sharp varia-
tions in fy. From f, we have some knowledge of what
the extrema values of §, should be. Hence, the set E
can be thought of as the set of waveforms minimizing
a specified cost function which penalizes when the ex-
trema values do not conform to this knowledge. There
are various cost functions that could be used. We can
either (a) constrain g, to retain the initial extrema es-
timates throughout the reconstruction, (b) allow the
values to be within an interval (the rationale being
that the estimates of the extrema values may not be
very reliable), or (c) have no constraints at all on the
values. Approaches (a) and (c) are extreme cases, as-
signing either infinite cost for wrong values or no cost
at all. The allowed interval of approach (b) serves as
a moderation, and one way of determining the interval
is to make it proportional to the confidence interval of
the LSE model fitting.

Since §, is interpolated from the estimate of the
subsampled waveform g, the sampling may be such that
we miss the true extrema and obtain instead the points
next to the extrema. Hence for each extremum of g,,
the points next to it are also allowed to be extrema to
account for this ambiguity. Once the extrema locations
and values are determined, the points in between them
must obey monotonicity. The algorithm used in con-
straining the points to obey monotonicity is described
in [3].

In general, analyzing a 2-D problem treating the
two coordinates independently is not an optimal ap-
proach. However, for computational feasibility, we pro-
pose here to treat the two coordinates separately. Hence,
for the wavelet transform, the data is filtered by the
separable 2-D filter bank using algorithms proposed by
Mallat [2], and each row of the row component (and
similarly for the column component) of the image is
processed as in the 1-D case.

4. Experimental Results

To obtain a test image, the original 512 x 512 Lenna
is lowpass filtered, subsampled by 2, and the process

Figure 5: Iterating the process of upsampling by 2, followed
by filtering by linear interpolator and unsharp masking us-
ing the discrete Laplacian gradient with A = 1.

is repeated to obtain a low resolution 1mage of 128 x
128, from which a 64 x 64 subimage is extracted as
the available data for all of the interpolation methods.
The lowpass filter used in obtaining the test image is a
separable 2-D filter, H(w;,w2) = Hi(w1)H1(w2), where
the impulse response of H;(w) is [-1,0,9,16,9,0,-1]
normalized to H1(0) = 1.

Figure 6 shows a 256 x 256 image of Lenna obtained
from performing the enhancement algorithm iteratively
twice on the 64 x 64 test image (i.e. magnify the 64 x 64
image, and then magnify the resulting 128 x 128 image
again using the algorithm). Convergence occurs rather
quickly and the reconstruction after obtaining the ini-
tial estimates or after 1-2 iterations is acceptable. After
5-10 iterations the image quality 1s quite good, and the
images either do not change discernibly afterwards or
they become slightly more blocky. Filters proposed in
[2] are used in the filter bank. We observe that using
regular filters yields better results (less blocky images)
than non-regular filters (such as Haar). The values of
the extrema are allowed to be within a confidence in-
terval during reconstruction. Because the image data
represents intensity values between 0 and 255, the pixel
values are clipped to be within this interval during re-
construction. Comparing this image to the bilinearly
interpolated image in Figure 7, the enhanced image
looks sharper. Figure 8 shows a bilinearly interpolated
image followed by unsharp masking with the commonly
used discrete Laplacian gradient [1] with A = 1, iter-
ated twice. The resulting image has very blocky edges
which are absent with our method, and it is also not
as sharp.

For the algorithm variant that does not constrain
the signal extrema, ringing effects tend to occur around
the edges. On the other hand, when constraining the
values to be the initial estimates, the resulting image
is not very good because the initial estimates are not
very reliable. A direct 4x magnification was also exper-
imented, but the result was not as good as performing
two 2x magnification.

A remark should be made on comparing our en-
hancement method with unsharp masking. The pro-
cedure of iteratively upsampling a signal, performing
linear interpolation and unsharp masking (using the
commonly used Laplacian gradient with A = 1) does
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Figure 6: 4x magnified Lenna using the 2x interpolation
algorithm iteratively.

not converge to a regular filter. Figure 5 shows the
1-D case of the iterated filter where the linear inter-
polation and unsharp masking impulse responses are,
respectively, [.5, 1, .5] and [-.5A, 1+, —.5)], with
A being a free parameter. Furthermore, because of the
change in sampling rate, this operation not only accen-
tuates the high frequency components but also other
frequency components from replicates of the original
spectrum. Hence, this method may not be adequate
for image interpolation.

5. Conclusion

This paper proposes a wavelet based method for image
interpolation. Using properties of wavelet transform
extrema across the scales, we extrapolate the extrema
needed at a higher scale for reconstruction of a higher
resolution image. The result shows that the enhanced
image is sharper and less blocky than simple schemes
such as linear interpolation and unsharp masking.

The better performance comes at an expense of
higher complexity and more computation than the lin-
ear methods, and the nonlinearity of our method makes
it difficult to characterize the behavior of the algo-
rithm analytically. Because the theoretical framework
is geared towards isolated singularities, this method is
not necessarily appropriate for, say, texture images.

For future research, we could explore the poten-
tial of processing the image with 2-D neighborhoods
instead of with a separable 1-D approach. Since the
method proposed here is for isolated singularities, a
more comprehensive interpolation algorithm would be
to segment the images into regions of isolated singular-
ities and textures and process them differently.

Figure 7: 4x magnification using bilinear interpolation.
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Figure 8: Lenna obtained from performing unsharp mask-
ing on a bilinearly interpolated image.
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