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ABSTRACT

Extended permutation (EP) filters are defined and ana-
lyzed in this paper. In particular, we focus on extended
permutation rank selection (EPRS) filters. These fil-
ters are constrained to output an order statistic from an
extended observation vector. This extended vector in-
cludes N observation samples and K statistics that are
functions of the observation samples. By selecting an
appropriate extended observation space, we show that
the EPRS filters can be designed to have excellent edge
enhancement characteristics. Moreover, the EPRS fil-
ters can perform edge enhancement in the presence of
noise making them a powerful filter class.

1. INTRODUCTION

Nonlinear filters have proven to be highly successful in
many signal and image restoration applications. In par-
ticular, rank order based filters are well known for their
ability to treat heavy tailed noise and nonstationary sig-
nals. With this type of data, linear filters tend to per-
form poorly. The first, and most well known, of these
rank order based filters is the median filter. Many other
more sophisticated rank order based filters have been
proposed including permutation filters [1] and rank con-
ditioned rank selection (RCRS) filters [4]. Rank order
based filters have primarily been utilized as smoothing
filters in restoration applications where a signal is cor-
rupted by noise. In addition to performing smoothing
operations, however, some rank order based filters can
be effective in edge enhancement applications. These
include the comparison and selection (CS) filter [6], the
lower-upper-middle (LUM) filter [5] and the weighted
majority of samples with minimum range (WMMR) fil-
ter [7]. The application of rank order based filters to
edge enhancement has received more limited attention.

In this paper, we develop a filter class which provides
a broad framework for formulating rank order based
edge enhancing filters. These filters will be referred to as
eztended permutation (EP) filters and can be viewed as
an extension of RCRS and permutation filters. The EP
filters are are based upon a partitioning of the observa-
tion space using rank permutations of samples from an
extended observation vector. This extended vector con-
tains N observation samples and K statistics which are
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functions of the observation samples. A common filter-
ing operation is defined for each partition, or ordering of
the extended observation vector. While numerous filter-
ing operations can be performed for each partition, we
focus here on rank selection operations, and refer to the
resulting filters as extended permutation rank selection
(EPRS) filters.

The EPRS filters posses excellent noise smoothing
capabilities as a result of their use of rank order infor-
mation and their inclusion of RCRS and permutation
filters as subsets. With well chosen statistics in the
extended observation vector, the capabilities of EPRS
filters can be made to include edge enhancement. We
show that the sample mean is such a statistic and that
the inclusion of the sample mean in the extended obser-
vation vector gives EPRS filters excellent edge enhance-
ment properties. Finally, it is also shown that the new
filters outperform previously defined rank order based
edge enhancing filters in a Markov sequence restoration
application.

This remainder of this paper is orgamzed as follows.
In Section 2, RCRS and permutation filters are defined
since the EP filter development builds upon these defini-
tions. The EPRS filters are defined in Section 3. Opti-
mization is addressed and some edge enhancement prop-
erties are provided in Section 4. Simulation results are
presented in Section 5. Finally, some conclusions are
given in Section 6.

2. RCRS AND PERMUTATION FILTERS

Consider the d-dimensional discrete sequences {d(n)}
and {z(n)}, where the index n = [n,, na, .. .,na]. Let
these sequences represent the desired and corrupted ver-
sions of a signal respectively. Also, consider a window
function that spans N samples and passes over the cor-
rupted sequence in some predetermined fashion. At each
location n, the N observation samples spanned by the
window can be indexed and written as a vector, yielding

x(n) = [z:(n), z2(n),..., zn(n)]. (1)

The windowing and indexing of the observation sequence
defines an ordering of the observed samples. Typically,
this ordering is temporal for one-dimensional time se-
quences. Other orderings are possible, as are windows of
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higher dimension. An ordering that can be universally
applied to the observed samples, regardless of signal di-
mension or window configuration, is rank ordering. The
N observation samples ordered according to rank will
be written as

z(1)(n) < zz)(n) < -+ < z(wy(m), (2)

where z(1)(n), z(2)(n), ..., z(~)(n) are referred to as the
order statistics of the observation.

The use of more than one ordering of the observed
samples has proved advantages in many filtering prob-
lems [1, 4]. For instance, temporal correlations can be
exploited if the temporal order of samples is known. In
contrast, rank ordering allows for the effective rejection
of outliers, since these samples are most often located
in the extremes of the ranked set. By utilizing both or-
derings, results superior to the two marginal cases can
be obtained. Thus, to relate the rank of a sample to its
location within the window, we define ri(n) to be the
rank of the sample in window location i.

The filtering, or estimation, problem can now be
posed as follows. From the set of observation samples,
we wish to form an estimate of the desired sample at
location 6 within the window. This estimate is denoted
as J;(n), where 1 < § < N. In the remainder of the
paper, the index n is assumed and is used explicitly
only when necessary for clarity.

Consider the vector r = [r,,7q;,..., 7, ], which
contains the ranks of M selected observation samples
Ty TygyevoyLypyy, Where 0 < M < N. Let r € 0z,
where z = [M, N] and Qz contains all permutations
of the N indices 1,2,..., N taken M at a time. The
output of an M**—order RCRS filter with window size
N is given by

Frors(X) = z(s(ry), (3)

where S(-) is said to be the selection rule and § : Qz —
{1,2,..., N} [4]. Thus, RCRS filter estimates are based
on the temporal and rank order of M selected samples.
If M = N, then r relates the temporal and rank order of
each input sample and {2z is the group of permutations.
In this case, the full permutation information is used and
(3) defines the class of permutation filters [1]. Using r
“as the basis for rank selection has been shown to be ef-
fective for smoothing and frequency selection/rejection
applications [1, 4]. However, using sample ranks alone
is not effective for edge enhancement. This follows be-
cause for locally monotone sequences, the resulting rank
vector is given by

r=[1,2,...,.N] or r=[{N,N-1,...,1] (4)

and remains constant. Thus, for an RS filter with any
rank based selection rule S(-), the output along a mono-
tone sequence will be a constant order statistic z(4),
where £ € {1,2,...,N}. Thus, no edge gradient en-
hancement can be accomplished.

3. EXTENDED PERMUTATION FILTERS

The EP filters overcome the problem of edge enhance-
ment by using the ranks of samples from an extended

observation vector as the basis for output rank selection.
Thus, define an extended observation vector as

X =[%1,%2,...,5N+K] (5)

y TN, Fl(x), Fz(x), ey FK(X)],
where Fj(x) is some function of the observation vector.

This extended observation vector can be sorted as be-
fore, yielding

= [z1, 22, ...

2(1) S Z(3) < -+ < F(N1K)- (6)

Also, let an extended rank vector be defined as

.,’i".yM,fgl,fﬁz,...,fgL]Eﬂz, (7)

where 1 <4 < N, N+1<8; < N+ K, and the limits
on M and L aregiven by 0 < M < Nand 0< L < K.
The element 7., is the rank of £,;, = z,; in X, and g,
is the rank of £5; = Fg,_n(x). Thus, the extended
rank vector lies in the extended rank permutation space
which is denoted as Qz, where z = [M, N, K, L].

Each unique extended rank vector ¥ € Uz defines
a distinct partition in the RN observation space. EP
filters are defined such that a common filtering operation
is applied to each observation vector lying in a given
partition. In the general case, the filtering operation
performed is a function of the extended observation and
can be either linear or nonlinear. For the EPRS filters
considered here, the filtering method is restricted to an
order statistic operation. That is, in each partition a
specific order statistic from %X is selected as the filter
output. These filters are formally defined below.

F={[fyy,Trygs--

Definition 3.1 The output of an EPRS filter is given
by

Feprs(X) = Z( 51, (8)
where 5 : Qz — {1,2,..., N+ K}.

The cardinality of the extended rank permutation
space depends, in general, on the K functions. The
cardinality is, however, bound above such that |Qz] <
(N+K)!//(N-M+K—L)!. Similarly, for each observed
rank permutation, the number of possible unique EPRS
filter outputs is less than or equal to N + K. Thus,
denoting the class of EPRS filters as ¥z, the cardinality
of the filter class is bound above by |¥z| < (N + K)!%z!,
It can be shown that the CS, LUM and WMMR filters
can be readily formulated as a subclass of EPRS filters
[3] as can RCRS and permutation filters. Thus, the new
filters comprise a broad class in which rank order based
smoothers and sharpeners can be related.

Consider the case where K = [ = 1 (Br=N+1)
and £n4; = Fi1(x) is an a-trimmed sample mean es-
timate. We show that this is an effective choice for
edge enhancement applications. This follows because
the rank of the mean provides information about where
the observation window lies with respect to an edge mid-
point. The rest of this paper will focus on this case. As
the size of the extended vector X is now determined by
M, we will refer to M as the order of the EPRS filter.
It can be shown that the CS, LUM and WMMR filters
can be readily formulated as a subclass of EPRS filters

[3].
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4. PROPERTIES AND OPTIMIZATION

Some edge enhancement properties of the EPRS filters
are presented in this section. Proofs of these properties
and additional properties can be found in [3]. First some
definitions must be presented. To define convex and
concave sequences, the first difference of samples is used.
Let A(n) denote the first difference, A(n) = z(n) —
z(n — 1). Then, {z} is convex (concave) if A(n) >
A(n — 1) (A(n) < A(n — 1)) for all n. Convex and
concave sequences can be concatenated to form edges.
An increasing sequence {z}, with first difference {A},
contains a convex/concave edge with inflection point I
if A(n) > A(n—1) forn < I and A(n) < A(n — 1) for
n > I. Thus, z(n) is convex for n < I and concave for
n>1.

The following property gives bounds on the rank of
the a-trimmed mean for an observation window passing
over such an edge. The proof of the property follows
closely that in [6], with the span of the window modified
by trimming off the o smallest and largest samples.

Property 4.1 (mean rank bounds) For a window
passing over an increasing convez/concave edge, there
exists an integer m such that the rank of the a—trimmed
mean, Fi(x(n)), is bound below by fg, > (N +1)/2 for
n < m and bound above by 75, < (N +1)/2 forn > m.
Moreover, the unigue point m is within N — 2(a — 1)
samples of the edge inflection point I, |I ~m| < N —
2(a —1). O

The following property gives sufficient conditions on
the selection rule S(-) which results in an EPRS filter
that reduces transition durations, or enhances edges.

Property 4.2 (Edge enhancement) Let Feprs(-)
be a window size N EPRS filter with K = L = 1 and
Fy(-) the a—trimmed mean. Restrict the selection rule
§:Qz— {1,2,..., N +1} which defines Fgprs(-) to be
S(E) = k1 when g, > (N+1)/2 and S(F) = N+2—k;
when 75, < (N+1)/2, for1 < ki, k2 < (N+1)/2. Take
{z} to be an increasing convez/concave edge sequence
with inflection point I. For any two thresholds Ty <
z(I) < Tz with transition duration na — ny > 2(N —
2(a — 1)), the transition duration of Fgprs({z}) is less
than that of {z}. Ifni < I — (N + ki — 2(a — 1)) and
n2 > I+ (N +ks —2(a—1)), then Feprs(-) reduces the
transition duration by N — (ki + k2) + 1 samples. O

This edge enhancing property is illustrated in Fig. 1.
The figure contains a convex/concave edge filtered by an
EPRS filter meeting the above edge enhancing condi-
tions. The results shown are for a symmetric selection
rule, k; = k2 = k. For this simple selection rule, the
EPRS filter is equivalent to the CS filter [6]. Such a ba-
sic selection rule can provide edge enhancement and al-
lows for relatively simple analysis. However, in practice
such a rule may perform poorly on signals with complex
structures and edges. By considering the ranks of the a-
trimmed mean and M selected observation samples, the
EPRS filter can use more sophisticated selection rules.
This allows the filter to adapt to a wider variety of signal
structures and edges.

— Original edge
0.8 |-~ - EPRS filtered (k=1)
EPRS filterad (k=4)
= = Four pass EPRS filtered (k=1)

4] 10 20 30 40 50 60 70 80 4] 100

Figure 1: A convez/concave edge filtered by an EPRS
filter. The selection rule is chosen to be symmetric, ky =
k2 = k and the window size 13 15.

Selecting a filter based solely on deterministic prop-
erties becomes less practical as the filter class size grows.
A more practical solution is to optimize over the fil-
ter class utilizing training sequences that accurately ac-
count for the varied edge types present in the signal of
interest. Provided that the training sequences {x(m)}
and {d(n)} are available, the EPRS filter selection func-
tion S(-) can be readily optimized under the the least
L, normed error (LNE) criteria. This procedure is de-
scribed in [3] and closely follows that described in [1, 4].
The training procedure is deterministic and guarantees
the globally optimal solution for the particular training
data.

5. EXPERIMENTAL RESULTS

In this section, some experimental results are presented.
The proposed filters could be useful in a number of im-
age restoration applications where an image is blurred
and corrupted by noise. However, to clearly illustrate
the operation of the filters, a simple one-dimensional
signal is used here. The signal is a five level Markov
sequence. The data have been blurred with a 15 sample
Gaussian point spread function and have been further
corrupted with impulsive noise.

The input signal, corrupted signal, and signal re-
stored using a EPRS filter are shown in Fig. 2. The
EPRS filter is employing a window size of N = 9 and
the partitions are determined from the rank of the cen-
ter sample and the mean only (M = 1). The filter has
been trained using a different signal and noise realiza-
tion. Notice that the impulses are suppressed and the
edge gradients have been fully restored in most places.
The output of the filter using only the rank of the center
sample (order one RCRS filter [4]) is shown in Fig. 3.
Here the impulses are suppressed, but, the edge gradi-
ents have not been enhanced significantly.

A plot showing the mean absolute error (MAE) for
some rank order based edge enhancers applied to the
Markov signal is shown in Fig. 4. Different signals and
noise realizations have been used for training and filter-
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EPRS Filtered Signal (M=1)
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Figure 2: Restoration of a blurred Markov sequence with
impulsive noise (impulse probability of 0.1). A PRS fil-
ter is used with the rank of the center sample and the
mean (M =1 and N =9).
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Figure 3: Restoration of a blurred Markov sequence with
impulsive noise. An order one RCRS filter is used with
only the rank of the center sample (M =1 and N =9).

ing. The EPRS filters yield the best results. Note that
better performance can be obtained, at the expense of
filter simplicity, by increasing M. Clearly the median
has the worst performance since it does not provide any
edge enhancement.

6. CONCLUSIONS

The EPRS filters use the rank of samples from an ex-
tended observation vector as the basis for selecting an
order statistic to be the filter output. By simply includ-
ing the mean in the extended observation vector, the fil-
ters exhibit excellent edge enhancement properties. The
filters also have excellent noise suppression characteris-
tics. Thus, edge enhancement can be performed in the
presence of noise making the filter class very powerful.

MAE for Nonlinear Fittars
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Figure 4: MAE versus impulse probability for a num-
ber of rank order based edge enhancers. The filters are
applied to the corrupted Markov signal.
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