POST-PROCESSING FOR ARTIFACT REDUCTION
IN JPEG-COMPRESSED IMAGES!

Jonathan K. Su and Russell M. Mersereau®

School of Electrical and Computer Engineering
Georgia Institute of Technology
Atlanta, GA 30332-0250

ABSTRACT

An iterative post-processing algorithm for reducing block-
ing and ringing in block transform-coded images is pre-
sented. It smooths the decompressed image and uses convex
projections theory to preserve the image’s edges and bit-
stream. The algorithm exploits the coding scheme’s block
structure and ringing behavior. In experiments it outper-
forms an existing method and gives significant subjective
and objective improvement over the decompressed image.
Sufficient conditions for algorithm convergence are given.

1. INTRODUCTION

At low bit rates, images and image sequences compressed
by block discrete cosine transform (DCT) methods (e.g.,
JPEG, MPEG) suffer from blocking and ringing. Post-
processing to reduce these artifacts has appeal since it only
requires the decompressed image. Proposed methods in-
clude block-boundary filtering [1], convex projections (CP)
[2, 3], and maximum & posteriori (MAP) estimation [4].
The first two methods focused on reducing blocking but not
ringing; the MAP approach addressed both artifacts but did
not exploit the block structure of the coding scheme.

We present an algorithm that incorporates the known
block structure to reduce both blocking and ringing. Our
algorithm builds upon the work of Zakhor [2] and Reeves
and Eddins [5].

2. MOTIVATION

2.1. Constraints

We take an image recovery approach employing CP. Let zo
be the decompressed image. Then we specify constraints on
the recovered image z*. Smoothness: z* should be (maxi-
mally) smooth to reduce blocking and ringing. Edge preser-
vation: z* should preserve edges found in zo. Bitstream
consistency: z* should compress to the same bitstream as
zg. Pizel limits: z* should only have values in [0, 255].

For smoothing, we use a 3 x 3 FIR filter F. F may
be linear shift-invariant (LSI) or linear shift-varying (LSV).
CP imposes the other constraints.

2.2. Convex Projections Theory

In a Hilbert space with the inrer-product norm, let Cy, Cs,
..., Cn be closed, convex sets with Co = N2, C; # . Let

1This research was supported in part by a grant from the
Denon Corporation.

2The authors’ electronic mail addresses are, respectively,
su@eedsp.gatech.edu and rmm@eedsp.gatech.edu.

2363

P; be the projection operator onto Ci, for t =0, 1, ..., n.
(Py exists but may not be known.) CP theory [6] guarantees
that the iteration

Zx = PpPnoq---PoPrzik, k=1,2,... (1)

converges to Pozo, l.e., imx—~co 25 = Pozo = z*.

We apply CP to image recovery by expressing the con-
straints on z* as Cy, ..., Cn. As long as z* € Cp, 2" is
considered a satisfactory solution.

2.2.1. Closed, Conver Sets

Our remaining constraints define three closed, convex sets.
To preserve edges, we limit how much 2*(z, y) may deviate
from zo(z,y) at each (x,y). That is, we restrict z*(z,y) €
lee(z,y),be(z, y)] to form the set Cg.

To maintain bitstream consistency, given zo’s quantiza-
tion table (QT) and its quantized DCT coefficients, we can
find the ranges of the original image’s unquantized DCT
coefficients. These ranges form Cg. (For example, if the
quantizer stepsize is 16 and the quantized DCT value is 3,
then the unquantized DCT value is in [40,55].)

Finally, the interval [0, 255] defines Cy .

2.2.2. Projections

Cg, Cq, and Cv have simple projection operators:

ai(z,y), z(z,9) < ai(z,y);
Piz(z,y) = bi(z,y), =z(z,9) > bi(z,y); (2)

z(z,y), otherwise,

for 1 = P,Q,V. Pg and Pv operate in the spatial domain,
Pg in the block DCT domain.

3. ALGORITHM OUTLINE

We use variations of one basic algorithm, outlined here. Let
T™ denote m consecutive applications of operator T e.g.,
T?z = T(Tz) and T™z = T(T™ 'z). Given zo, we choose
F, Cg, Cq, and Cv; the way Cg, Cg, and Cv are chosen
ensures (CENCq NCyv) = Cy # 0. Then we apply

zg = lim (PvPQPE)szk_l, k=1,2,..., kmax. (3)
m—-00
From CP. the limit exists, so zx is well-defined for all %.

3.1. Interpretation

With kmax = 00, (3) becomes a constrained optimization
algorithm [5] that maximizes the smoothness of z* under
the constraint z* € Cy. If kmax s finite, then we have a
partially-smoothed recovered image that lies in Cs.

0-7803-2431-5/95 $4.00 © 1995 IEEE

No. of pixels of pizel type

block type Nuniform I Nedge
uniform 50-64 0
uniform/texture 20-49 0
texture 0-19 0

edge/texture < 0.65(64—Negge) | 1-19

medium edge > 0.65(64—N,g5e) | 1-19

strong edge 0-44 20-64

Table 1: Guide to find block type from pixel types.

3.2. Convergence

When kmax = oo, convergence of (3) becomes important.
Defire G = limm—oo(Pv PoPg)™F; CP ensures that G is
well-defined. By [7, Theorem 5.1.4], if G is nonexpansive
(NE) and {Gzx}3%, is bounded, then {Gzx}32, converges
to a fixed point z*. By CP, z* € C,.

Pg, Pg, and Py are NE, and Py is bounded. Thus,
{Gzx}3%, is bounded and F NE is a sufficient condition for
convergence. Given F LSI, F is NE iff its Fourier transform
F(wz,wy) satisfies | F(wz,wy)| € 1V (wz,wy). Given F LSV
with operator norm ||F||, F NE iff |F|| < 1.

If F is expansive, G may still be NE, ensuring conver-
gence. Nonlinearity of Pg, Pg, and Py make this property
difficult to check. In practice we have found that for F
LSV, 1 < ||F|| < 1.002 and convergence always occurred;
the projections overcome F’s expansivity and make G NE.

4. ALGORITHM IMPLEMENTATION

4.1. Initialization

We find Cq directly from 2o, and Cv is always the same,
so we detail the choice of Cr and F.

4.1.1. Edge-Preservation Set

Our specification of Cg preserves edges and incorporates
JPEG’s 8 x 8 block structure. We observe that ringing
occurs near sharp edges but independently between blocks.
To exploit this idea, we label each pixel as edge, texture,
or uniform and each 8 x8 block as uniform, uniform/texture,
texture, edge/texture, medium edge, or strong edge (cf. Ta-
ble 1). In uniform and uniform/texture blocks, uniform
pixels are already smooth but texture pixels are not: F
may change the former slightly, the latter more. In texture
blocks, the situation is reversed. In edge/texture blocks,
non-edge pixels may reflect the true texture or ringing: F
has a stronger effect on these pixels. Finally, in medium
and strong edge blocks, ringing is likely in texture pixels
but not in uniform pixels: F has the strongest effect on
texture pixels and a moderate effect on uniform pixels.

1. Compute the local (3 x 3) variance ¢°(z,y) at each
pixel zo(z,y) and assign pizel types via

uniform, o?(z,y) < Ty;
pizel type(z,y) = { texture, T, < o’(z,y) < Te;
edge, T. < o%(z,y).

pizel type
block type uniform l texture l edge | coastal
uniform 5 20 0 15
uniform/texture 5 10 0 15
texture 15 5 0 15
edge/texture 15 30 0 15
medium edge 10 50 0 15
strong edge 10 50 1] 15

Table 2: Guide to find A(z, y) from pixel and block types.

Thin the set of edge pixels. Edge pixels removed from
this set become texture pixels. (In practice, T, = 100
and 7. = 900. T, is high enough so that blocking
artifacts are not confused with edge pixels.)

2. For each block, use its pixel types and Table 1 to find
its block type.

3. Introduce a fourth pixel type: coastal. A coastal pixel
is a non-edge pixel that has an edge pixel among its
eight nearest neighboring pixels.

4. Taking the pixel type of z0(z,y) and the block type
of the block containing zo(z,y), refer to Table 2 to
obtain A(z,y). Then ar(zr,y) = z0(z,y) — Az, y)
and bg(z,y) = z0(z,y) + A(z,).

4.1.2. Filter Selection
For F LSI, we use a 3 x 3 FIR filter with impulse response®

£(0,0) = 0.204%

F(£1,0) = F(0,+1) = 0.1239; (4)

f(x1,1) = f(£1,-1) = 0.0751.
This F is NE.

Our LSV F permits three types of filtering. Edge pixels
are not smoothed. For non-edge, non-coastal pixels, we
employ (4). Since coastal pixels lie near dissimilar regions,
each coastal pixel is set to the mean of the non-edge pixels
in its 3 x 3 neighborhood.

4.2. Iteration

The iterative part of the algorithm is simply (3). Let d(-,")
be a closeness metric like mean-square error or maximum
absolute pixel difference (MAPD). We specify tolerances §,
dcp and/or limits kmax, fmax. The algorithm becomes

1. Set zo = the decompressed image and &k = 1.

2. Compute z' = Fzx_;.

3. Apply CP with Cg, Cg, and Cv:

(a) Set zp =2', £=1.

(b) Compute z, = Pv PgPrz;_,.

(c) Hdep(zs,20—1) < 6cp or £ = lmax, set zx = z,
and go to Step 4. Otherwise, increment £ and
go to Step 3a.

4. If d(zx, zk—1) < 8 or k = kmax, set z* = zx and stop.
Otherwise, increment k and go to Step 2.

3This may be the same filter that Zakhor used. There is some
confusion because Zakhor called for a 3 x 3 filter but then gave
a 5 x 5 filter with 9 nonzero taps.

2364

5. EXPERIMENTAL RESULTS

We implemented three versions of our algorithm: (A,) F
LSI, 6=10; (Ag) F LSV, §=10; and (A} F LSV, kmax =2
(i.e., always 2 iterations). We chose T, T., and the param-
eters in Tables 1 and 2 by running A, on a decompressed
version of the 256 x 256 8-bit gray image “Cameraman.”
The original image was compressed with standard JPEG
using a QT equal to 3 x (JPEG example luminance QT) to
produce considerable blocking and ringing. For comparison,
we implemented Zakhor’s algorithm (Az): zx = PgFzx_,,
k=1,2,..., with F LSI, § =10. For all algorithms, we
used MAPD for d(-,-) and d¢p(,-), and 6cp = 10.

We ran the algorithms on 10 other 256 x 256 8-bit gray
images without changing the parameters. Az always con-
verged after 2 or 3 iterations. A, and Ag converged in 2 or
3 iterations, with the CP step always converging in 2 sub-
iterations. For each test image, A, gave the best results,
pictorially and in peak signal-to-noise ratio (PSNR).* Ap
outperformed Ag, which in turn usually outperformed Az.

Figs. 1 and 2 show an original and a decompressed im-
age, respectively. The result of Az appears in Fig. 3. Block-
ing has been reduced at the cost of blurring. Consider-
able ringing remains and the PSNR has worsened slightly.
Figs. 4, 5, and 6 display results of Aa, Ag, and A, re-
spectively. All methods have reduced blocking as well as
ringing. Textures have been blurred, though no more than
by Az. Edges remain sharp, and the PSNR has improved.

Fig. 7 shows the mean change in PSNR over the 11
images at each step in the algorithms. Upon convergence,
the mean changes for Az, A,, and As are —0.14, 40.01,
and +40.31 dB, respectively. .A,, which stops after 2 iter-
ations, has a mean change of +0.49 dB. Filtering with F
LSI always causes a PSNR drop. F LSV initially raises the
PSNR, but repeated use lowers the PSNR. This PSNR de-
crease is likely due to oversmoothing, which explains why
A, performs best.®

6. SUMMARY AND REMARKS

Smoothness, edge preservation, bitstream consistency, and
pixel limits motivate the method. A filter provides smooth-
ness, and the other constraints lend themselves to CP. Ini-
tializing Cg is the most complicated step; other techniques
than Sec. 4.1.1 are possible. Given the filter, constraint
sets, and stopping criteria, the algorithm is very simple and
highly effective.

The algorithm can be efficiently implemented in paral-
lel. After filtering the entire image (Step 2), we apply CP
(Step 3) to each block in parallel. If kmax and fm.x are
used, computations can be done in-place because zx_; is
not required to check for convergence.

Finally, the algorithm can be applied to DCT video
coders (MPEG, H.261) and could be adapted to reduce ar-
tifacts in subband coding.

4For an Ny x Ny original image zg and an image z, PSNR =

(NzNy(255)%) + (E (e (20(@:9) = 2(=, y))z)-
SOur algorithm was also tested with F LSV and kmax = 1,
but results were undersmoothed and still displayed ringing.

REFERENCES

[1] H. C. Reeve, I11, J. S. Lim, ICASSP ’83, pp. 1212-1215.

[2] A. Zakhor, IEEE Tr. CAS Video Tech., v. 2, pp. 91-95,
Mar. 1992.

[3] Y. Yang, N. P. Galatsanos, A. K. Katsaggelos, /EEE
Tr. CAS Video Tech., v. 3, pp. 421-432, Dec. 1993.

[4] R. L. Stevenson, ICASSP ’93, pp. 401-404.

(5] S. J. Reeves, S. L. Eddins, IEEE Tr. CAS Video Tech.,
v. 3, pp. 439-440, Dec. 1993.

[6] M. L. Sezan, Ultramicroscopy, v. 40, pp. 55-67, 1992.

[7] J. M. Ortega, W. C. Rheinboldt, Iterative Solution of
" Nonlinear Equations in Several Variables. New York:
Academic Press, 1970.

Fig. 1: 256 x 216 portion (for detail) of original
256 x 256 8-bit gray image “Cameraman”

Fig 2: Decopressed image (code at
0.41 bits/pixel, PSNR 28.05 dB)

2365

Fig. 3: Az result (convergence after
2 iterations, PSNR 27.72 dB)

Fig. 4: Aq result (convergence after
3 iterations, PSNR 28.26 dB)

Zakhor algorithrm

alpha algorithm

Fig. 5: Ag result

(convergence after

3 iterations, PSNR 28.54 dB)

Fig. 6: A, result (stopped after

2 iterations, PSNR 28.59 dB)

beta aligorithm

1 1

o.8) - o.8

& of { -
=

§ -0.6 - -l -0.8
-

g’ -tr 1 -

-1.6 -1 -1.85

- -

1

=

cP

= =P F CP
Action

-2

 cPr F CcP F P

Action

=2
Iteration

B3
hermtion

2
Reration

Fig. 7: Change in PSNR from simulations with 11 test images. Note that A, is
just A stopped after 2 iterations. Solid line indicates the mean change
in PSNR. Vertical bars indicate the range of the PSNR change results.

2366

