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ABSTRACT

The paper addresses the problem of a real time approach for thin
structures identification. The proposed method make use of
adaptive morphological operators in which the normal textural
properties are brought to bear on the filter design in order to
enhance the output related to anomalous structures. We discuss
how the introduction of adaptivity criteria is useful to reduce the
sensitivity of morphological filtering to local variations typical of
textures and to noise. In addition, theoretical investigations related
to the problem of the optimization algorithm are presented and
discussed. Experimental results have been carried out both on
classical natural textures and on ceramic tile images and prove the
efficiency of the proposed approach in many practical
applications.

1. INTRODUCTION

Texture has received considerable attention in the image analysis
literature. A number of distinct approaches have been suggested
for texture representation falling to two major classes: those based
on the spatial statistics of the textured image, and those based on
its spectral properties. From the methods that operate in the spatial
domain, the most restrictive in terms of assumptions pertaining to
the textural properties they can characterize are structural
methods [3] which are based on the view that texture is a regular
pattern generated by a repeated placement of well defined textural
primitives. Early psychophysical studies [5] motivated the
development of methods exploiting second order image statistics
exemplified by the co-occurrence matrix representation [4]. The
generative methods attempt to represent texture by models which
can reproduce statistically similar textural characteristics [2] [1].
The last category of methods in this class is based on rank order
statistics or mathematical morphology [8].

In this paper we explore these approaches In particular, the rank
order based approach is developed where for crack detection we
focus on an adaptive rank order filtering scheme. The problem we
consider is that of detecting hair-like cracks on complex textural
backgrounds. The experimental comparisons will be carried out on
Brodatz textures with cracks superimposed on them and on
ceramic tile textures with natural cracks.

2. IDENTIFICATION OF THIN DISCONTINUITIES

The class of rank-order filters and morphological operators
presents several advantages in terms of computational complexity,
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low dependency on texture statistics, and robustness to noise.
Lets consider a generic Rank Order Filter (ROF) [6] with rank ¢
and mask M, defined as follows:

yi=Er,M[X,']= Rank {xi—jljeM} (1)
(N-Dr+l

where the operator Rank{X} extracts the n-th element of the array
X previously ordered in ascending sequence. It can be observed
that common filters like minimum, maximum and median are
obtained from Eq. 1 by imposing the value of r equal to 0, 1, or
0.5 respectively.

Given the formal definition of ROF, we can introduce the dual
filter, defined as a filter with rank (/-r) mirrored with respect to
the mask center. Called D the dual of E, the following equation
holds:

Dy miIFE,_, A [x,-]=(N 5;1’1/:%1{): il eM} (2)

On the basis of Eq. 2, a formal definition of a generic Rank Order
Based Filter (ROBF) with rank » and mask M is expressed by the
following

Ry pglxi1= Dy | Ep palxi]] 3)

It can be noticed that simply imposing the value of r in Eq. 3 it is
possible to generate some interesting filters like Opening (r=0)
and Closing (r=1) with a generic mask M. Such filters, usually
called morphological filters, have been extensively used to solve
the problem of thin discontinuities addressed in this section and
are the subject of the following pages.

3. MORPHOLOGICAL FILTERING

Among the various types of morphological filters [8], the operator
that has been selected as the best candidate for the identification of
thin discontinuities is the (Close-Open) one [9], denoted in the
following CO, which can be defined as follows:

CO(l) = Close(]) - Open(l) =
=Erosion(Dilation(])) - Dilation(Erosion(I)) (4)

The effect of such operation can be better clarified by the simple
example of Fig 1: at the top, a 3x3 CO is applied to two round
shaped objects, while at the bottom, the same operation is
performed on two thread-like elements. It is evident that, while in
the former case the effect of the filtering is minimal since the
erosion does not eliminate completely the object, in the latter case
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the CO enhance the thin structures. It is to be pointed out that the
result would not change if the objects were dark on a light
background where the thin structure disappear in the Closing
operation, or light on a dark background, with the thin structure
eliminated by the Opening operation.

Dilation

Dilation Erosion

Erosion

Figure I - Result of 3x3-CO operator on bidimensional objects.

In more complex situations, the CO operator in its general
formulation is not suitable for two reasons: first, it detects not only
the anomalous structures, but also the thin configurations that are
normally in the texture, and second, it is sensitive to the noise, in
the sense that it enhance regular variations of the intensity value.
Such problems result in a non-null output even when the filter is
applied to a homogeneous texture, as shown in Fig. 2.
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Figure 2 - Result of 3x3 CO operator on a texture by Brodatz
(left: original image, right: image filtered and magnified by a
Sactor 2)

4. ADAPTIVE MORPHOLOGICAL FILTERING

In this section we will discuss how the introduction of adaptivity
criteria is useful to reduce the sensitivity of morphological
filtering to local variations typical of textures and to noise. As the
CO filter is very simple, there are only two elements that can be
considered for achieving a spatial adaptivity: the dimension of the
mask and its shape. The former parameter is the easier to modify,
but does not produce in general the result needed: in fact, it often
happens that the thickness of the irregularities to be identified has
a size similar to the acceptable variations of the texture. The latter
is more interesting, for it is possible to generate and utilize an

optimized structuring element, that is, a CO mask that produces a
minimum response when applied to an image without
irregularities.

In [7] a general solution to the problem of optimum adaptation of
the mask in Rank-Order based filtering is proposed. Here, a set of
candidates 4 is fixed a priori, and the fact that the j-th element
(pixel) of 4 belongs or not to the mask is expressed by the sign of
a real variable m; On the basis of such formulation of the
problem, it is possible to define a cost function to be minimized
(the goal is to obtain a null response on a regular texture); the
method used to perform the optimization is the classical gradient
descent algorithm. :

Analysing in detail the Salembier solution, some major points of
criticism should be expressed; in particular, the definition of the
continuous variables m; simply appears as a mathematical artifice
to make the cost function differentiable, but does not change the
underlying binary nature of the problem. As a matter of fact, the
output of the filter is not sensitive to any variation of the
parameter m; that does not modify the sign: this means that the
cost function to be minimized is a step function, and is therefore
not suitable for the application of a gradient descent. Fig. 3 shows
two examples of cost function in a 2D domain (for higher
dimensions the concepts does not change); it is evident that, at
each iteration, the direction toward which to move is computed by
looking at the partial derivatives in the borders of the current
plateau. Consequently, the next step will move to another plateau
or remain in the same, depending on the step size, but it is possible
to reach only the configurations that have Hamming distance 1.
Moreover, due to the high discontinuity of the function, not
always the joint use of the two partial derivatives performs well: in
Fig. 3 (b) is shown a typical example where this strategy produces
the worst possible result.
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Figure 3 - Example of cost functions in a 2-D domain.

The proposed algorithm addresses the optimization problem in a
more direct way. Two hypotheses are first made:

i. given a minimum number N, of non-null elements, every
algorithm tends to reach this number in a few steps: it is
therefore convenient to keep Ny, fixed;

ii. since the optimization involves the global image, the
computation of the score to be associated to each candidate
is based on the average value of the cost function over the
all image.

Given such rules and a generic cost function J that penalizes the
higher outputs of the filter, the algorithm proceeds iteratively by
searching for the best swap between two candidates of the mask.

2360



In other words, at each step all the pairs of inside-mask and
outside-mask elements are exchanged, and the corresponding
average cost function is evaluated: If the cost of the current
configuration is lower than all the new costs, the algorithm ends,
otherwise, the best configuration is chosen and another iteration is
started.

The following example better clarifies this procedure. Suppose we
have a 2x2 search area (a total of candidate elements 4 = 4) and
want to construct a structuring element of two elements (N, = 2);
the situation is represented in a 3D space in Fig. 4. The vertices of
the hypercube represent all the possible configurations of the
mask, with 1, 2, 3 or 4 non-null elements: a 0 in the position ¢
means that the i~th element of the mask is not used, while a 1 in
the same position means that it has to be considered in the
filtering. In particular, the marked vertices represent the
configurations with 2 non-null elements that we are interested in.
Starting from the vertex [1010] the algorithm will consider all the
four vertices at distance two, produced by the swapping of two
elements (i.e., [0110], [0011], [1001], and [1100]) and will
compute the minimum of the cost function: if the starting
configuration result is the best, then the algorithm is stopped,
otherwise, the algorithm is launched again from the new point, and
the only remaining configuration (i.e., [0101]) is introduced.

In general, if the search area has a dimension 4 and the non-null
elements are N, < A, then at each iteration it will be necessary to
calculate N,,x(4-N,,) new configurations, and therefore N,,x(4-
Ny, values of the cost function. As this way to proceed is very
expensive, a sub-optimal solution yielding good results has been
developed, based on a separation of the two operations that
compose a swap: in practice, the transition from a mask to another
is achieved by first finding the best configuration at distance one
from the starting point (raising Ny, to Np,+/) and then the best
configuration at distance one from the intermediate point. In such
a way the cost function has to be calculated only N,,+(4-Np,)=A
times.
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Figure 4 - Cost function domain with possible two-element masks
pointed out.

Concerning the choice of the configuration from which the
minimization procedure starts, a reasonable choice is to select a
symmetrical central block of the desired dimension in the search
area: this would not create any a-priori preference in the evolution
of the minimization. To experimentally validate this hypothesis, a
number of trials have been performed each with the starting point

selected randomically: the results obtained confirmed that the best
solution is in general achieved by a symmetrical initialization.

5. DECISION CRITERION AND COST FUNCTION

Two major points have still to be defined: the selection of a
criterion to detect the presence or not of an anomaly, and
consequently the definition of a reliable cost function to be used
during the optimization procedure. The choice of an effective
decision criterion requires the specification of the main properties
that characterise a good decision; by studying the outputs of the
filter in different situations, three requirements have been
identified:

i.  apixel must be penalized proportionally to its value;

ii. if there is a number of contiguous pixels with non-null value,
they must also be penalized proportionally to the number;

ifi. as this operation has to be performed several times during the
optimization, the number and the complecity of the involved
operations must be very low.

The proposed criterion, called Anomaly Presence Degree (ADP) is
defined as follows:

APD(A)=Y (1dg(i))’ (5
ied

where A is a square search area with side L and Idg(i) is the output
of the filter for the i-th pixel. During the analysis phase the image
is subdivided in blocks of dimension LxL, and for each block the
ADP parameter is evaluated and compared with a threshoid
thypp: if the threshold is exceeded, the block is classified as
anomalous, otherwise it is considered regular. Usually the
dimension L can be fixed in the range 30 to 60 pixels; in the tests
carried out the value L=40 was adopted.
From what was previously said, it is clear that the goal of the
adaptation algorithm, if applied to a normal image used for
training, is to minimize the maximum 4DP value present in the
image: then, the cost function J will be defined as:

J=T$(APD(A)) (6)

where © is the set of square blocks into which the image is
subdivided. Once the optimization is completed, the minimum
value of J can be used to define the value of the threshold th 4 pp:

thypp =(1+Q)Jmin (7)

where « is a real positive constant, varying in the range (0,1], to
be fixed depending on the characteristics of the image to be
analysed. This allows one to define the sensitivity to small
variations (the lower the value of @, the higher the sensitivity).

6. RESULTS

The following example show the application of the adaptive
Close-Open filtering (4CO) and compares this approach with the

2361



non-adaptive filtering. In Fig. 5, the Brodatz texture of Fig. 2 is
filtered by using two different masks formed by 9 non-null
elements on a 5x5 squared search area: a fixed central mask m,
(left) and an adaptive mask mg resulting from the optimization
algorithm (right).
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Figure 5 - Outputs of the non-adaptive and adaptive filtering
applied to Fig. 2
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Figure 6 - Texture of Fig. 2 artificially alterated with a thin defect

Figure 8 - (a,b) The results of thresholding the outputs of the non-
adaptive (a) and adaptive (b) filtering applied to Fig 6

The effect of the adaptation is evident: the mask m, is less
sensitive to the variations of the texture, thus producing a lower
response (the output values of Fig. 5 have been magnified for the
sake of visibility). In Fig. 6 the same texture was artificially
altered by introducing a thin structure, while in Fig. 7 (a) and (b)
the response of the CO filter applied by respectively using the two
mask m and m is shown. In Fig. 8 (a) and (b) the filtered images

are binarized by a simple threshold to emphasize the higher
performances of the adaptive method. In (c) the sparse points
caused by noise are eliminated by not considering the blocks
under the threshold th 4 p.

The thresholded outputs of the rank order filters for crack
detection on a tile image is shown in Figures 9. The cardinality of
the structuring elements was set to 9 with search area of 5*5. The
APD criteria was computed for blocks of size 15*15. The Figures
shows the output of those blocks with APD>th,pp highlighting
the crack structures. No post-processing line-filter has been
applied, therefore the residual noise could be reduced. The
processing time was about 0.4 for cardinality 9 elements, 256*256
images on a HP9000/750 workstation.

@ b)

Figure 9 - Image of a tile with a crack (a) and thresholded output
of ACO filter (b).
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