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ABSTRACT

We use the representation theory of finite groups
to simplify the Karhunen-Loéve Transform (KLT) of
systems with group theoretically defined symmetries.
In this paper we focus on applications of the dihe-
dral groups D(n) which consist of all isometries that
map the n-sided regular polygon into itself. The group
D(4) is of special importance for all problems on square
grids. Connected to each group is a type of Fourier
Transform. This transform block-diagonalizes all op-
erators that commute with the group operations. As
a result all correlation matrices of processes with group

theoretically defined symmetries are block-diagonalized.

This simplifies the computation of the KLT consider-
ably.

For real world data the symmetry assumptions lead-
ing to the simplification of the KLT are never exactly
fulfilled and the KLT based on the block-diagonal cor-
relation matrix is only an approximation to the cor-
rect KLT. In the second part of the paper we compare
several approximations to the KLT for a large data
base consisting of blocks collected from a standard TV-
channel. Finally we discuss some of the consequences
for image coding applications.

1. GROUP THEORETICAL TRANSFORMS

It is a well-known fact that the Fourier Transform of
a signal is invariant up to a constant complex factor
with respect to time-shifts. This relation between the
Fourier Transform and the time-shift operators has a
group theoretical generalization in which linear opera-
tors have the structure of a group. For these operator
groups it is then possible to construct a corresponding
Fourier-like transform with many properties similar to
the Fourier Transform.

In the following we will only consider groups with
finitely many elements. Many of the results are also
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valid for larger groups but we will not need them in this
paper (further information can be found in the vast lit-
erature on the subject, see for example: [1], [2] and [3]).
The connection between operators and a group G is
given by means of a representation:

Definition 1 Assume that V is an N-dimensional
vector space and that for each g in a group G we have
a linear operator T(g) that operates on V.

1. We say that T forms an N-dimensional repre-
sentation of G if

T(9192) = T(g1)T (g2)
for all g1,92 € G.

2. Fizing a basis in V we can describe each lin-
ear operator T(g) by a matriz. Thus we define:
an N -dimensional matrix representation of G
is a mapping: T from G into the space of N x N
complex matrices such that

T(g192) = T(91)T(g2)
for all g1,92 € G.

3. A base change in V (described by a matriz B)
describes the same linear operator by two different
matrices: Ty(g) and T»(g) = BT1(g)B~!. We say
that two matriz representations are equivalent if
there is a matriz B such that

Tx(g9) = BTu(9)B™*
for all g.

Selecting a “good” basis in V' might simplify the
form of the matrices considerably. We say that the
representation is reducible if there is a matrix P such
that

PT(gi)P~" = (“}f g;;) )
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where the matrices A;, By and Ci have the same size
for all k. If a representation it is not reducible then
we say that it is irreducible. If we can further sim-
plify the representations so that they become block-
diagonal with irreducible components along the diag-
onal (B =0) we say that they are completely re-
ducible.

For finite groups the representation theory states
that there are only finitely many different irreducible
representations (with respect to equivalence) and that
all representations are completely reducible. Moreover

the irreducible representations are all finite dimensional.

For finite groups the role of the complex exponential
function for the group of shift operations is played by
the irreducible representations.

Of central importance for our application is the def-
inition of group theoretical symmetries:

Definition 2 Let T be an N -dimensional representa-
tion of a finite group G and C be an operator C that
acts on the same space as the T'(g). Then we say that C
is a G-symmetric operator if for all g € G:

T(9)C = CT(g). (2)

The property of G-symmetric operators that is of in-
terest for us is the following: All G-symmetric matri-
ces are block-diagonalized in the coordinate system in
which the representation matrices are given by irre-
ducible blocks along the diagonal. The block struc-
ture, i.e. the number and size of the blocks is only
determined by the group G and it is the same for all
G-symmetric C. The coordinate transform described
by the matrix P that accomplishes the change of coor-
dinate system can be seen as a special transform asso-
ciated with the corresponding group symmetry.

Of special interest are the groups of shift opera-
tions and the so called dihedral groups D(n), defined
as group of isometries that leave the regular n-sided
polygon invariant. D(n) consists of 2n rotations and
reflections. In our application we are mainly interested
in images on square (and perhaps also on hexagonal)
grids. The relevant groups are in these cases D(4) and
D(6). The main properties of the representations of
D(2n) are summarized in the next theorem (for a com-
plete description see [4])

Theorem 1 Assume that n 1s even and denote by p
the rotation with rotation angle 27” and by o the reflec-
tion on a symmetry axis of the polygon. Set further-
more w = €™/, Then we have:

1. The elements in D(n) are of the form o'p* with
(1=0,1k=0,...n~1).

2. There are four one-dimensional irreducible repre-
sentations:

Ti(o'p*) =1 T3 (o'p*) = (-1}

Tio'h) = (-DF  THo'oh) = (-1
3. There are § — 1 two-dimensional irreducible rep-
resentations:

2/ ky _ wjk 0 2 _ 0 u’djk
T (p") = ( 0 w—jk) Tj(op®) = (w—jk 0
withj=1,...5 -1

It is remarkable that only roots of unity appear in
these representations. To get real valued transforms
these roots of unity can be replaced by the correspond-
ing cosine and sine terms. As a result the D(4) trans-
form can be implemented using only additions and sub-
tractions.

In an important example from image coding the
vector space V' has dimension 64 and is given by all vec-
tors describing gray value distributions on 8 x 8 square
image blocks. The elements of the D(4)-group act on
these blocks as permutations that rotate and reflect
these image blocks. The G-symmetric operator is given
by the correlation matrix computed from these blocks.
If all rotations and reflections of the blocks appear
equally often then the correlation matrix is D(4) sym-
metric and the D(4) transform block-diagonalizes C.

2. EVALUATION OF KLT
APPROXIMATIONS

In a rate/distortion sense the optimal transform for
high bit-rate image transform coding is the Karhunen-
Loéve transform (KLT). By assuming some kind of
group symmetry the group theoretical transform could
be used as a preprocessing step which would simplify
the problem of computing the KLT. In such an ap-
plication one would first apply the group theoretical
transform to the original data. Then one would assume
that the correlation matrix for the transformed data is
block-diagonal. The KLT is then computed for the re-
sulting (smaller) blocks and the eigenvectors obtained
are finally transformed back into the original domain.
Ignoring all entries outside the blocks on the diagonal
leads to errors in the computed eigenvectors and the
true KLT will only be obtained when the problem was
fully G-symmetric.

In our experiments we evaluated a number of KLT
approximations with the help of a large database. The
database consisted of 100 000 patches of size 8 x8 which
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were digitized from a Swedish television channel over
a period of 10 days. We collected the patches by digi-
tizing 10 000 frames with a commercial frame grabber.
In each of the frames 10 randomly located blocks were
processed. For each pixel we got a three-component
vector with the RGB values at this location. From the
RGB vectors we computed the 3 x 3 correlation ma-
trix and its eigenvectors. The eigenvalue distribution
showed that most of the information was contained in
the first eigenvector which acts approximately as av-
eraging filter. Using this first eigenvector we decorre-
lated the color information pixelwise and projected the
RGB-vector down to a one-dimensional intensity value.
These patches of intensity value distributions are the
data vectors used in the following experiments.

In one series of experiments we tested five differ-
ent KLT approximations against the true eigenvector
system:

D(4)-symmetry: the second order statistics are un-
changed under reflections and rotations by mul-
tiples of 90 degrees.

Stationarity: the autocorrelation function is only a
function of the difference vector on the grid.

Circular-symmetry: correlations depend only on the
distance between points.

Toeplitz the autocorrelation function can be separated
into two one-dimensional autocorrelations.

DCT shift invariance leading to a fixed transformation
as KLT approximation.

For each approximation method we computed first
the approximated eigenvector system from all patches
in the database. Then we selected 1000 random patches
from the database and computed the reconstruction
error for all truncation orders. By plotting the recon-
struction errors for all approximation orders we can
compare the performance of the different methods (see
Figure 1). These experiments showed that the station-
ary assumption is clearly valid. We conclude also that
the dihedral approximation fits the data reasonably
well, whereas the Toeplitz and the radial approxima-
tions are of significantly lower quality. A more detailed
description of this experiment can be found in [5]. We
also applied the different transforms to widely used im-
ages such as Lenna. We found comparable reconstruc-
tion errors for approximations with 1 to 8 terms. If
we selected more terms, however, (about 20) then the
ranking of the different methods is more or less exactly
the opposite of what could be expected from our previ-
ous experiments: Now the radial approximation works
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Figure 1: Reconstruction error for the 8 x 8 database

best and the Karhunen-Loéve expansion is among the
worst. This shows that there are significant statisti-
cal differences between these images and the patches
collected from the TV-channel.

3. IMAGE CODING APPLICATIONS AND
SUMMARY

One advantage of the D(4)-transform over the DCT
is that it is not restricted to rectangular blocks. The
selection of the form of the window is only restricted
by the requirement that the window must be invariant
under rotations and reflections. For all these blocks
the D(4)-transform is applicable. It has been argued
that such alternative tiling schemes might have some
advantages in image coding since the eye seems to be
more sensitive to horizontally and vertically oriented
artifacts (some experiments with different tilings of the
image are reported in [6]).

Some results of our preliminary experiments with
such non-standard tiling methods is shown in Figures 2
and 3. In this experiment we partitioned the image
with two different tiles: a snowflake-like and a more
circular shaped tile. From the two correlation matrices
belonging to these tiles we computed a D(4) approx-
imation of the KLT. We then used these two differ-
ent sets of basis vectors in our coding experiment. In
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Figure 2 we see the coded versions of Lenna with the
DCT (top) and the non-standard D(4) tiling (bottom)
respectively. In diagram 3 we show the PSNR for a
number of different compression rates. The diagram
shows that the numerical performance of the DCT-
based method is always better than the D(4) based
coding. The question if this numerical advantage also
corresponds to a perceptual advantage is harder to an-
swer and has to be tested with a larger number of im-
ages.

Summarizing, we showed that for each finite group
there is a DFT-like transform and that the applica-
tion of this transform block-diagonalizes operators with
group theoretical symmetries. In cases where the op-
erators do not posses the full symmetry we get ap-
proximations to the KLT. We concentrated mainly on
the description of the dihedral transforms and evalu-
ated this and several other popular approximations to
the KLT with the help of a large database of image
blocks. The experiments showed that the symmetry
assumptions are largely valid but they showed also that
widely used standard images have different statistical
characteristics than these TV-images. We also studied
some image coding applications and compared the D(4)
based methods with the standard DCT coding scheme.
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Figure 2: Coding with DCT (top) and D(4)
Tiling(bottom)
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Figure 3: Comparison of the PSNR for DCT and D(4)
coding
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